A Discrete-Event Network Simulator
API
test-lte-antenna.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2011, 2012 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation;
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  *
17  * Author: Manuel Requena <manuel.requena@cttc.es>
18  * Nicola Baldo <nbaldo@cttc.es>
19  */
20 
21 #include "ns3/boolean.h"
22 #include "ns3/double.h"
23 #include "ns3/enum.h"
24 #include "ns3/ff-mac-scheduler.h"
25 #include "ns3/log.h"
26 #include "ns3/lte-enb-net-device.h"
27 #include "ns3/lte-enb-phy.h"
28 #include "ns3/lte-global-pathloss-database.h"
29 #include "ns3/lte-helper.h"
30 #include "ns3/lte-ue-net-device.h"
31 #include "ns3/lte-ue-phy.h"
32 #include "ns3/mobility-helper.h"
33 #include "ns3/simulator.h"
34 #include "ns3/string.h"
35 #include "ns3/test.h"
36 #include <ns3/lte-chunk-processor.h>
37 
38 using namespace ns3;
39 
40 NS_LOG_COMPONENT_DEFINE("LteAntennaTest");
41 
51 {
52  public:
61  static std::string BuildNameString(double orientationDegrees,
62  double beamwidthDegrees,
63  double x,
64  double y);
74  LteEnbAntennaTestCase(double orientationDegrees,
75  double beamwidthDegrees,
76  double x,
77  double y,
78  double antennaGainDb);
80  ~LteEnbAntennaTestCase() override;
81 
82  private:
83  void DoRun() override;
84 
87  double m_x;
88  double m_y;
89  double m_antennaGainDb;
90 };
91 
92 std::string
93 LteEnbAntennaTestCase::BuildNameString(double orientationDegrees,
94  double beamwidthDegrees,
95  double x,
96  double y)
97 {
98  std::ostringstream oss;
99  oss << "o=" << orientationDegrees << ", bw=" << beamwidthDegrees << ", x=" << x << ", y=" << y;
100  return oss.str();
101 }
102 
104  double beamwidthDegrees,
105  double x,
106  double y,
107  double antennaGainDb)
108  : TestCase(BuildNameString(orientationDegrees, beamwidthDegrees, x, y)),
109  m_orientationDegrees(orientationDegrees),
110  m_beamwidthDegrees(beamwidthDegrees),
111  m_x(x),
112  m_y(y),
113  m_antennaGainDb(antennaGainDb)
114 {
115  NS_LOG_FUNCTION(this);
116 }
117 
119 {
120 }
121 
122 void
124 {
125  Config::Reset();
126  Config::SetDefault("ns3::LteSpectrumPhy::CtrlErrorModelEnabled", BooleanValue(false));
127  Config::SetDefault("ns3::LteSpectrumPhy::DataErrorModelEnabled", BooleanValue(false));
128  Config::SetDefault("ns3::LteHelper::UseIdealRrc", BooleanValue(true));
129 
130  // Disable Uplink Power Control
131  Config::SetDefault("ns3::LteUePhy::EnableUplinkPowerControl", BooleanValue(false));
132 
133  Ptr<LteHelper> lteHelper = CreateObject<LteHelper>();
134 
135  // use 0dB Pathloss, since we are testing only the antenna gain
136  lteHelper->SetAttribute("PathlossModel",
137  StringValue("ns3::ConstantSpectrumPropagationLossModel"));
138  lteHelper->SetPathlossModelAttribute("Loss", DoubleValue(0.0));
139 
140  // Create Nodes: eNodeB and UE
141  NodeContainer enbNodes;
142  NodeContainer ueNodes;
143  enbNodes.Create(1);
144  ueNodes.Create(1);
145  NodeContainer allNodes = NodeContainer(enbNodes, ueNodes);
146 
147  // Install Mobility Model
148  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
149  positionAlloc->Add(Vector(0.0, 0.0, 0.0)); // eNB
150  positionAlloc->Add(Vector(m_x, m_y, 0.0)); // UE
152  mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
153  mobility.SetPositionAllocator(positionAlloc);
154  mobility.Install(allNodes);
155 
156  // Create Devices and install them in the Nodes (eNB and UE)
157  NetDeviceContainer enbDevs;
158  NetDeviceContainer ueDevs;
159  lteHelper->SetSchedulerType("ns3::RrFfMacScheduler");
160  lteHelper->SetSchedulerAttribute("UlCqiFilter", EnumValue(FfMacScheduler::PUSCH_UL_CQI));
161  lteHelper->SetEnbAntennaModelType("ns3::CosineAntennaModel");
163  lteHelper->SetEnbAntennaModelAttribute("HorizontalBeamwidth", DoubleValue(m_beamwidthDegrees));
164  lteHelper->SetEnbAntennaModelAttribute("MaxGain", DoubleValue(0.0));
165 
166  // set DL and UL bandwidth.
167  lteHelper->SetEnbDeviceAttribute("DlBandwidth", UintegerValue(25));
168  lteHelper->SetEnbDeviceAttribute("UlBandwidth", UintegerValue(25));
169 
170  enbDevs = lteHelper->InstallEnbDevice(enbNodes);
171  ueDevs = lteHelper->InstallUeDevice(ueNodes);
172 
173  // Attach a UE to a eNB
174  lteHelper->Attach(ueDevs, enbDevs.Get(0));
175 
176  // Activate the default EPS bearer
177  enum EpsBearer::Qci q = EpsBearer::NGBR_VIDEO_TCP_DEFAULT;
178  EpsBearer bearer(q);
179  lteHelper->ActivateDataRadioBearer(ueDevs, bearer);
180 
181  // Use testing chunk processor in the PHY layer
182  // It will be used to test that the SNR is as intended
183  Ptr<LtePhy> uePhy = ueDevs.Get(0)->GetObject<LteUeNetDevice>()->GetPhy()->GetObject<LtePhy>();
184  Ptr<LteChunkProcessor> testDlSinr = Create<LteChunkProcessor>();
185  LteSpectrumValueCatcher dlSinrCatcher;
186  testDlSinr->AddCallback(MakeCallback(&LteSpectrumValueCatcher::ReportValue, &dlSinrCatcher));
187  uePhy->GetDownlinkSpectrumPhy()->AddDataSinrChunkProcessor(testDlSinr);
188 
189  Ptr<LtePhy> enbphy =
190  enbDevs.Get(0)->GetObject<LteEnbNetDevice>()->GetPhy()->GetObject<LtePhy>();
191  Ptr<LteChunkProcessor> testUlSinr = Create<LteChunkProcessor>();
192  LteSpectrumValueCatcher ulSinrCatcher;
193  testUlSinr->AddCallback(MakeCallback(&LteSpectrumValueCatcher::ReportValue, &ulSinrCatcher));
194  enbphy->GetUplinkSpectrumPhy()->AddDataSinrChunkProcessor(testUlSinr);
195 
196  // keep track of all path loss values in two centralized objects
198  UplinkLteGlobalPathlossDatabase ulPathlossDb;
199  // we rely on the fact that LteHelper creates the DL channel object first, then the UL channel
200  // object, hence the former will have index 0 and the latter 1
202  "/ChannelList/0/PathLoss",
203  MakeCallback(&DownlinkLteGlobalPathlossDatabase::UpdatePathloss, &dlPathlossDb));
204  Config::Connect("/ChannelList/1/PathLoss",
205  MakeCallback(&UplinkLteGlobalPathlossDatabase::UpdatePathloss, &ulPathlossDb));
206 
207  Simulator::Stop(Seconds(0.035));
208  Simulator::Run();
209 
210  const double enbTxPowerDbm = 30; // default eNB TX power over whole bandwidth
211  const double ueTxPowerDbm = 10; // default UE TX power over whole bandwidth
212  const double ktDbm = -174; // reference LTE noise PSD
213  const double noisePowerDbm =
214  ktDbm + 10 * std::log10(25 * 180000); // corresponds to kT*bandwidth in linear units
215  const double ueNoiseFigureDb = 9.0; // default UE noise figure
216  const double enbNoiseFigureDb = 5.0; // default eNB noise figure
217  double tolerance = (m_antennaGainDb != 0) ? std::abs(m_antennaGainDb) * 0.001 : 0.001;
218 
219  // first test with SINR from LteChunkProcessor
220  // this can only be done for not-too-bad SINR otherwise the measurement won't be available
221  double expectedSinrDl = enbTxPowerDbm + m_antennaGainDb - noisePowerDbm + ueNoiseFigureDb;
222  if (expectedSinrDl > 0)
223  {
224  double calculatedSinrDbDl = -INFINITY;
225  if (dlSinrCatcher.GetValue())
226  {
227  calculatedSinrDbDl = 10.0 * std::log10(dlSinrCatcher.GetValue()->operator[](0));
228  }
229  // remember that propagation loss is 0dB
230  double calculatedAntennaGainDbDl =
231  -(enbTxPowerDbm - calculatedSinrDbDl - noisePowerDbm - ueNoiseFigureDb);
232  NS_LOG_INFO("expected " << m_antennaGainDb << " actual " << calculatedAntennaGainDbDl
233  << " tol " << tolerance);
234  NS_TEST_ASSERT_MSG_EQ_TOL(calculatedAntennaGainDbDl,
236  tolerance,
237  "Wrong DL antenna gain!");
238  }
239  double expectedSinrUl = ueTxPowerDbm + m_antennaGainDb - noisePowerDbm + enbNoiseFigureDb;
240  if (expectedSinrUl > 0)
241  {
242  double calculatedSinrDbUl = -INFINITY;
243  if (ulSinrCatcher.GetValue())
244  {
245  calculatedSinrDbUl = 10.0 * std::log10(ulSinrCatcher.GetValue()->operator[](0));
246  }
247  double calculatedAntennaGainDbUl =
248  -(ueTxPowerDbm - calculatedSinrDbUl - noisePowerDbm - enbNoiseFigureDb);
249  NS_TEST_ASSERT_MSG_EQ_TOL(calculatedAntennaGainDbUl,
251  tolerance,
252  "Wrong UL antenna gain!");
253  }
254 
255  // repeat the same tests with the LteGlobalPathlossDatabases
256  double measuredLossDl = dlPathlossDb.GetPathloss(1, 1);
257  NS_TEST_ASSERT_MSG_EQ_TOL(measuredLossDl, -m_antennaGainDb, tolerance, "Wrong DL loss!");
258  double measuredLossUl = ulPathlossDb.GetPathloss(1, 1);
259  NS_TEST_ASSERT_MSG_EQ_TOL(measuredLossUl, -m_antennaGainDb, tolerance, "Wrong UL loss!");
260 
261  Simulator::Destroy();
262 }
263 
270 {
271  public:
273 };
274 
276  : TestSuite("lte-antenna", SYSTEM)
277 {
278  NS_LOG_FUNCTION(this);
279 
280  // orientation beamwidth x y gain
281  AddTestCase(new LteEnbAntennaTestCase(0.0, 90.0, 1.0, 0.0, 0.0), TestCase::QUICK);
282  AddTestCase(new LteEnbAntennaTestCase(0.0, 90.0, 1.0, 1.0, -3.0), TestCase::QUICK);
283  AddTestCase(new LteEnbAntennaTestCase(0.0, 90.0, 1.0, -1.0, -3.0), TestCase::QUICK);
284  AddTestCase(new LteEnbAntennaTestCase(0.0, 90.0, -1.0, -1.0, -36.396), TestCase::QUICK);
285  AddTestCase(new LteEnbAntennaTestCase(0.0, 90.0, -1.0, -0.0, -1414.6), TestCase::QUICK);
286  AddTestCase(new LteEnbAntennaTestCase(0.0, 90.0, -1.0, 1.0, -36.396), TestCase::QUICK);
287  AddTestCase(new LteEnbAntennaTestCase(45.0, 90.0, 1.0, 1.0, 0.0), TestCase::QUICK);
288  AddTestCase(new LteEnbAntennaTestCase(-45.0, 90.0, 1.0, -1.0, 0.0), TestCase::QUICK);
289  AddTestCase(new LteEnbAntennaTestCase(90.0, 90.0, 1.0, 1.0, -3.0), TestCase::QUICK);
290  AddTestCase(new LteEnbAntennaTestCase(-90.0, 90.0, 1.0, -1.0, -3.0), TestCase::QUICK);
291 
292  AddTestCase(new LteEnbAntennaTestCase(0.0, 120.0, 1.0, 0.0, 0.0), TestCase::QUICK);
293  AddTestCase(new LteEnbAntennaTestCase(0.0, 120.0, 0.5, sin(M_PI / 3), -3.0), TestCase::QUICK);
294  AddTestCase(new LteEnbAntennaTestCase(0.0, 120.0, 0.5, -sin(M_PI / 3), -3.0), TestCase::QUICK);
295  AddTestCase(new LteEnbAntennaTestCase(0.0, 120.0, -1.0, -2.0, -13.410), TestCase::QUICK);
296  AddTestCase(new LteEnbAntennaTestCase(0.0, 120.0, -1.0, 1.0, -20.034), TestCase::QUICK);
297  AddTestCase(new LteEnbAntennaTestCase(60.0, 120.0, 0.5, sin(M_PI / 3), 0.0), TestCase::QUICK);
298  AddTestCase(new LteEnbAntennaTestCase(-60.0, 120.0, 0.5, -sin(M_PI / 3), 0.0), TestCase::QUICK);
299  AddTestCase(new LteEnbAntennaTestCase(-60.0, 120.0, 0.5, -sin(M_PI / 3), 0.0), TestCase::QUICK);
300  AddTestCase(new LteEnbAntennaTestCase(-120.0, 120.0, -0.5, -sin(M_PI / 3), 0.0),
301  TestCase::QUICK);
302  AddTestCase(new LteEnbAntennaTestCase(-120.0, 120.0, 0.5, -sin(M_PI / 3), -3.0),
303  TestCase::QUICK);
304  AddTestCase(new LteEnbAntennaTestCase(-120.0, 120.0, -1, 0, -3.0), TestCase::QUICK);
305  AddTestCase(new LteEnbAntennaTestCase(-120.0, 120.0, -1, 2, -15.578), TestCase::QUICK);
306  AddTestCase(new LteEnbAntennaTestCase(-120.0, 120.0, 1, 0, -14.457), TestCase::QUICK);
307  AddTestCase(new LteEnbAntennaTestCase(-120.0, 120.0, 1, 2, -73.154), TestCase::QUICK);
308  AddTestCase(new LteEnbAntennaTestCase(-120.0, 120.0, 1, -0.1, -12.754), TestCase::QUICK);
309 }
310 
Lte Enb Antenna Test Suite.
Tests that the propagation model and the antenna parameters are generate the correct values.
double m_orientationDegrees
antenna orientation in degrees
double m_antennaGainDb
antenna gain in dB
static std::string BuildNameString(double orientationDegrees, double beamwidthDegrees, double x, double y)
Build name string.
double m_x
x position of the UE
double m_beamwidthDegrees
antenna beamwidth in degrees
double m_y
y position of the UE
void DoRun() override
Implementation to actually run this TestCase.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
Hold variables of type enum.
Definition: enum.h:56
This class contains the specification of EPS Bearers.
Definition: eps-bearer.h:91
Qci
QoS Class Indicator.
Definition: eps-bearer.h:106
The eNodeB device implementation.
double GetPathloss(uint16_t cellId, uint64_t imsi)
void SetSchedulerAttribute(std::string n, const AttributeValue &v)
Set an attribute for the scheduler to be created.
Definition: lte-helper.cc:303
NetDeviceContainer InstallEnbDevice(NodeContainer c)
Create a set of eNodeB devices.
Definition: lte-helper.cc:482
void SetEnbAntennaModelType(std::string type)
Set the type of antenna model to be used by eNodeB devices.
Definition: lte-helper.cc:416
void SetSchedulerType(std::string type)
Set the type of scheduler to be used by eNodeB devices.
Definition: lte-helper.cc:289
void Attach(NetDeviceContainer ueDevices)
Enables automatic attachment of a set of UE devices to a suitable cell using Idle mode initial cell s...
Definition: lte-helper.cc:1044
void SetPathlossModelAttribute(std::string n, const AttributeValue &v)
Set an attribute for the path loss models to be created.
Definition: lte-helper.cc:402
void SetEnbAntennaModelAttribute(std::string n, const AttributeValue &v)
Set an attribute for the eNodeB antenna model to be created.
Definition: lte-helper.cc:423
void SetEnbDeviceAttribute(std::string n, const AttributeValue &v)
Set an attribute for the eNodeB devices (LteEnbNetDevice) to be created.
Definition: lte-helper.cc:409
void ActivateDataRadioBearer(NetDeviceContainer ueDevices, EpsBearer bearer)
Activate a Data Radio Bearer on a given UE devices (for LTE-only simulation).
Definition: lte-helper.cc:1441
NetDeviceContainer InstallUeDevice(NodeContainer c)
Create a set of UE devices.
Definition: lte-helper.cc:497
The LtePhy models the physical layer of LTE.
Definition: lte-phy.h:50
A sink to be plugged to the callback of LteChunkProcessor allowing to save and later retrieve the lat...
Ptr< SpectrumValue > GetValue()
The LteUeNetDevice class implements the UE net device.
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
void SetAttribute(std::string name, const AttributeValue &value)
Set a single attribute, raising fatal errors if unsuccessful.
Definition: object-base.cc:200
Ptr< T > GetObject() const
Get a pointer to the requested aggregated Object.
Definition: object.h:471
Hold variables of type string.
Definition: string.h:56
encapsulates test code
Definition: test.h:1060
void AddTestCase(TestCase *testCase, TestDuration duration=QUICK)
Add an individual child TestCase to this test suite.
Definition: test.cc:305
A suite of tests to run.
Definition: test.h:1256
Hold an unsigned integer type.
Definition: uinteger.h:45
void Reset()
Reset the initial value of every attribute as well as the value of every global to what they were bef...
Definition: config.cc:856
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:891
void Connect(std::string path, const CallbackBase &cb)
Definition: config.cc:975
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
static LteAntennaTestSuite g_lteAntennaTestSuite
Static variable for test initialization.
#define NS_TEST_ASSERT_MSG_EQ_TOL(actual, limit, tol, msg)
Test that actual and expected (limit) values are equal to plus or minus some tolerance and report and...
Definition: test.h:337
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1336
Every class exported by the ns3 library is enclosed in the ns3 namespace.
Callback< R, Args... > MakeCallback(R(T::*memPtr)(Args...), OBJ objPtr)
Build Callbacks for class method members which take varying numbers of arguments and potentially retu...
Definition: callback.h:707
mobility
Definition: third.py:96