Provisão de Qualidade de Serviço (QoS) em Redes Integradas WiMAX EPON

Mariana Piquet Dias Nelson Luis Saldanha da Fonseca (Orientador)

Instituto de Computação - UNICAMP, Campinas/SP, Brasil

5 de novembro de 2009

Roteiro

- 1 Introdução
- 2 Integração WiMAX EPON
- 3 Trabalhos Relacionados
- 4 Problemas a serem estudados
- 5 Plano de trabalho e Cronograma
- 6 Referências

Introdução

- Aumento na demanda por banda
 - Aplicações que exigem altas taxas de transmissão
 - Vídeo sobre IP (IPTV)
 - Vídeo sob demanda (VoD)
 - Televisão de alta definição (HDTV)
 - Voz sobre IP (VoIP)
- Redes de acesso a banda larga
 - Fixa
 - Ethernet (IEEE 802.3), **EPON** (802.3ah)
 - Móvel
 - Wi-fi (802.11), **WiMAX**(802.16)
- Integração WiMAX EPON

WIMAX (Worldwide Interoperability for Microwave Access)

- Padrão IEEE 802.16e
- Alcance de até 70 km
- Taxas de até 74Mb/s
- Qualidade de serviço
- Mobilidade
- Baixo custo de implantação e manutenção

WIMAX

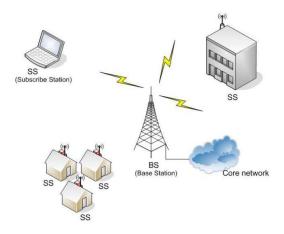
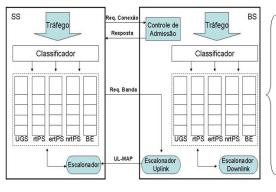



Figura: Arquitetura Rede IEEE 802.16 [2]

QoS em Redes WIMAX

Serviço	Requisito de QoS	Aplicação		
UGS	Latência máxima Jitter Taxa máxima	VolP		
ertPS	Latência máxima Jitter Taxa mínima Taxa máxima	VolP		
rtPS	Latência máxima Taxa mínima Taxa máxima	Vídeo		
nrtPS	Taxa mínima Taxa máxima	FTP		
BE	Nenhum	WEB		

Figura: QoS em Redes IEEE 802.16e [1]

EPON (Ethernet *Passive Optical Network*)

- Padrão IEEE 802.3ah
- Rede de acesso óptica PMP
- Alcance de até 20 km
- Taxas de até 1 Gb/s
- Qualidade de serviço
- Alto custo de implantação e manutenção

EPON

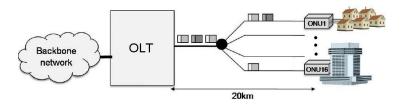
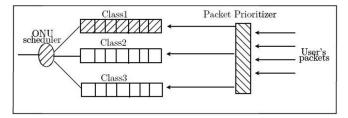



Figura: Arquitetura Rede IEEE 802.3ah [5]

QoS em Redes EPON

Service name	QoS parameter	Example
Class 1	Delay, jitter, throughput	VoIP
Class 2	Delay, throughput	Video services
Class 3	No QoS provision	HTTP

Figura: QoS em Redes IEEE 802.3ah [5]

BSs 802.16 são equipadas com interfaces Ethernet que pode ser facilmente conectada a um EPON

- BSs 802.16 são equipadas com interfaces Ethernet que pode ser facilmente conectada a um EPON
- EPON possui diferentes níveis de largura de banda

- BSs 802.16 são equipadas com interfaces Ethernet que pode ser facilmente conectada a um EPON
- EPON possui diferentes níveis de largura de banda
- Mecanismos de suporte a QoS

- BSs 802.16 são equipadas com interfaces Ethernet que pode ser facilmente conectada a um EPON
- EPON possui diferentes níveis de largura de banda
- Mecanismos de suporte a QoS
- Redução significativa no projeto da rede e custos operacionais

- BSs 802.16 são equipadas com interfaces Ethernet que pode ser facilmente conectada a um EPON
- EPON possui diferentes níveis de largura de banda
- Mecanismos de suporte a QoS
- Redução significativa no projeto da rede e custos operacionais
- Questão em aberto

- BSs 802.16 são equipadas com interfaces Ethernet que pode ser facilmente conectada a um EPON
- EPON possui diferentes níveis de largura de banda
- Mecanismos de suporte a QoS
- Redução significativa no projeto da rede e custos operacionais
- Questão em aberto
- Área promissora de pesquisa

Arquiteturas Propostas [Gangxiang, 2007]

- Arquitetura Independente
- Arquitetura Híbrida
- Arquitetura Orientada a Conexão
- Arquitetura de Microondas sobre Fibra (MoF)

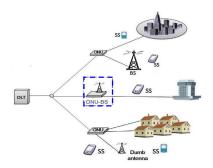


Figura: Arquiteturas propostas [6]

Trabalhos Relacionados

- OWI (Optical Wireless Integration) scheduling [4]
- QDBA (QoS based Dynamic Bandwidth Allocation) [3]
- IOW-AC (Integrated Optical Wireless Admission Control) [7]
- WE-DBA (WiMAX-EPON Dynamic Bandwidth Allocation) [8]

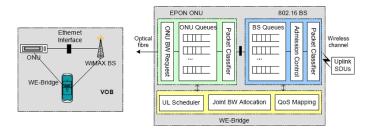


Figura: Esquema WE-DBA [8]

Trabalhos Relacionados

Comparação entre Trabalhos Relacionados

Proposta	Esquema	Objetivo
[Luo et al., 2007]	OWI	Escalonamento
[Yan et al., 2008]	IOW-AC	Controle de Admissão
[Yang <i>et al.</i> , 2009]	WE-DBA	Escalonamento
[Hwang et al., 2009]	QDBA	Escalonamento
[Alsolami and Ho, 2009]	NTHS	Escalonamento
[Li et al., 2009]	NHS	Handoff

Objetivo

- Investigar e desenvolver mecanismos de provisão de QoS para a rede integrada WiMAX EPON, baseados na arquitetura híbrida
 - Alocação de banda e Escalonamento
 - Controle de Admissão
 - Handover

Alocação de Banda e Escalonamento

- Downlink x Uplink
- Mecanismo poll/request/grant
- Objetivo
 - Prover requisitos de retardo e largura de banda para aplicações sensíveis a QoS
 - Promover utilização eficiente do meio
 - Redução do *overhead*

Controle de Admissão

- Mecanismo de controle de tráfego que restringe o número de usuários simultâneos na rede.
- Objetivo
 - Esquema de Controle de Admissão para a rede integrada

Handover

- Transição de uma unidade móvel (SS) de uma célula para outra de forma transparente ao usuário.
- Objetivo
 - Estudar os efeitos da mobilidade no desempenho da rede integrada

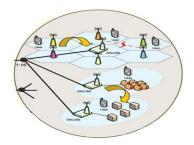


Figura: Handover entre SS

Atividades

- Investigar o problema de Alocação de banda e Escalonamento na rede integrada
- Investigar o problema de Controle de Admissão e Handover na rede integrada
- Implementação, testes e estudos comparativos
- 4 Escrever a Dissertação
- 5 Revisão da Dissertação
- 6 Defesa da Dissertação

	20	09	2010									2011				
	11	12	01	02	03	04	05	06	07	08	09	10	11	12	01	02
1	•	•				·										
2	•	•	•													
3				•	•	•	•	•	•	•	•	•				
4													•	•		
5															•	
6																•

Tabela: Cronograma das atividades.

F.L. Figueiredo and L.C.P. Pereira.
Tecnologia wimax: uma visão geral.
Revista Cpqd tecnologia, 2008.

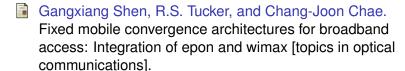
I-Shyan Hwang, Jhong-Yue Lee, Chih-Wei Huang, and Zen-Der Shyu.

Advanced dynamic bandwidth allocation and scheduling scheme for the integrated architecture of epon and wimax. *Mobile Data Management, IEEE International Conference on*, 0:655–660, 2009.

Yuanqiu Luo, Si Yin, Ting Wang, Y. Suemura, S. Nakamura, N. Ansari, and M. Cvijetic.

Qos-aware scheduling over hybrid optical wireless networks.

In Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. OFC/NFOEC 2007. Conference on, pages 1–7, March 2007.



M. Reisslein M. McGarry and M. Maier.

Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms.

IEEE Communications Surveys and Tutorials, 10:46–60, 2008.

Communications Magazine, IEEE, 45(8):44–50, August 2007.

Ying Yan, Hao Yu, Hua Wang, and Lars Dittmann.
Integration of epon and wimax networks: uplink scheduler design.

In Weisheng Hu, Shoa-Kai Liu, Ken ichi Sato, and Lena Wosinska, editors, *Integration of EPON and WiMAX networks: uplink scheduler design*, number 1 in 7. SPIE, 2008.

Kun Yang, Shumao Ou, K. Guild, and Hsiao-Hwa Chen. Convergence of ethernet pon and ieee 802.16 broadband access networks and its qos-aware dynamic bandwidth allocation scheme.

Selected Areas in Communications, IEEE Journal on, 27(2):101–116, February 2009.

Referências

Perguntas

