Um mecanismo baseado em SDN para flexibilizar o controle de tráfego em redes LTE

Luciano Jerez Chaves1,2
Islene Calciolari Garcia2
Edmundo R. Mauro Madeira2

1Federal University of Juiz de Fora (UFJF)
2University of Campinas (Unicamp)
Outline

❖ Introduction
❖ Software-Defined Networking
❖ Long-Term Evolution networks
❖ SDN and LTE integration
❖ Proposed traffic control mechanisms
❖ Literature review
❖ Conclusions and future work
Introduction

- Mobile data traffic is growing at a compound annual growth rate of 57%.
- Increasing number of higher-generation connectivity.
- Multimedia streaming represents more than 50% of mobile data traffic.

Future networks

- 5G networks for people and things
- Lower latency and higher data rates
- Heterogeneous Networks (HetNets)
- High-connectivity backhaul and core networks for more base stations

Software-Defined Networking will be a key differentiator of 5G systems
Contributions

❖ **This work contributes with…**

❖ OpenFlow protocol integrated into LTE backhaul networks
❖ Specialized OpenFlow EPC controller for LTE traffic control
 ❖ Network traffic routing
❖ Bearer admission control
❖ Literature review on SDN and LTE integration
Software-Defined Networking

- Decouples the control plane from the data plane
- Network intelligence is centralized in software
- Simplified distributed forwarding hardware
- More agile and cost-effective networks
OpenFlow protocol

- SDN southbound interface
- Basic primitives to program the forwarding plane of OpenFlow switches
- Concepts of flows to identify network traffic
- **Switch datapath specification**
Long-Term Evolution networks

- 4G standard for high-speed wireless communication
- Maintained by the 3rd Generation Partnership Project
- Evolved Packet System (EPS)
 - Evolved Universal Terrestrial Radio Access Network (E-UTRAN)
 - Evolved Packet Core (EPC)
EPS architecture

Packet domain only
Standardized interfaces
GPRS Tunneling Protocol (GTP)
LTE QoS and EPS bearers

- EPS bearers identify packet flows with common QoS treatment
- Bearers are associated with a QoS Class Identifier (QCI)
 - Minimum Guaranteed Bit Rate (GBR)
 - Non-Guaranteed Bit Rate (Non-GBR)
SDN and LTE integration

- **Proposed integration**
 - OpenFlow switches in the backhaul network (S1 interfaces)
 - New OpenFlow match fields for GTP TEID routing
 - No changes in EPC elements for tunnel handling
SDN and LTE integration

- Proposed integration
 - OpenFlow switches in the backhaul network (S1 interfaces)
 - New OpenFlow match fields for GTP TEID routing
 - No changes in EPC elements for tunnel handling

Software-Defined Mobile Networking (SDMN)
Network topology

- **Wired backhaul topology**
 - Ring with arbitrary number of OpenFlow switches
 - Unified S-GW/P-GW gateway element
 - Ethernet full-duplex links

- **Wireless access topology**
 - Hexagonal grid with inter-site distance of 500 m
 - UEs scattered closed to the eNBs
OpenFlow EPC controller

- LTE traffic control mechanisms
 - Backhaul traffic routing
 - Bearer admission control
OpenFlow EPC controller

Controller communicates with the MME element for bearer management procedures
Network traffic routing

- Look for routing paths and install GTP TEID match rules
- For the ring topology, the routing options are reduced to clockwise or counter-clockwise paths
- Different routing policies
 - Shortest Path Only
 - Shortest Path First
Bearer admission control

- Reserve the requested bandwidth for accepted GBR bearers
 - Shortest path only routing policy blocks GBR requests when there is no available bandwidth in the shortest routing path
 - Shortest path first routing policy checks on the other routing path for the required bandwidth before blocking the GBR request
Performance evaluation

- **Network Simulator 3 + OFSwitch13 module**

- **Backhaul ring size**: 4/10 OpenFlow switches connected to eNBs

- **UE load distributions**: balanced or unbalanced (30% of UEs in one half of the ring, 70% on the other half)

- **Admission control**: up to 40% of link bandwidth for GBR traffic

<table>
<thead>
<tr>
<th>Traffic applications</th>
<th>Traffic type</th>
<th>Bearer QCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP</td>
<td>UDP</td>
<td>GBR (1)</td>
</tr>
<tr>
<td>Live Video Streaming</td>
<td>UDP</td>
<td>GBR (2)</td>
</tr>
</tbody>
</table>
Block ratio analysis

Improved block ratio for the *shortest path only* routing policy

10 OpenFlow switches in the ring
Routing path analysis

Improved block ratio for the shortest path only routing policy

4 OpenFlow switches in the ring
Literature contributions for SDMN
Literature contributions for SDMN

- Mobile backhaul network
- Use cases
- Congestion control
 - Venmani et al. 2012
- Mobility Management
 - Gurusanthosh et al. 2013
Literature contributions for SDMN

Mobile backhaul network

Use cases

Congestion control

Mobility Management

Pentikousis et al. 2013

Tunnel-based

Kempf et al. 2012

Tag-based

Hampel et al. 2013

Flow-based

Li et al. 2012

Jin et al. 2013

Mobile core network

Traffic routing

Venmani et al. 2012

Gurusanthosh et al. 2013

Pentikousis et al. 2013
Kempf et al. 2012
Hampel et al. 2013
Li et al. 2012
Jin et al. 2013
Ali-Ahmad et al. 2013
Literature contributions for SDMN

- **Mobile backhaul network**
 - Use cases:
 - Congestion control
 - Mobility Management
 - Tunnel-based
 - Tag-based
 - Flow-based
- **Mobile core network**
 - Traffic routing:
 - Traffic offloading
 - Traffic management:
 - Load balancing

References:
- Venmani et al. 2012
- Gurusanthosh et al. 2013
- Pentikousis et al. 2013
- Kempf et al. 2012
- Hampel et al. 2013
- Li et al. 2012
- Jin et al. 2013
- Ali-Ahmad et al. 2013
- Nagaraj and Katti 2014
- Said et al. 2013
- Ghazisaedi et al. 2013
Literature contributions for SDMN

Mobile backhaul network
- Use cases
 - Congestion control
 - Mobility Management
 - Tunnel-based
 - Tag-based
 - Flow-based
 - Traffic offloading
 - Load balancing
 - Mobility management

Mobile core network
- Traffic routing
- Traffic management
- Use cases

References:
- Venmani et al. 2012
- Gurusanthosh et al. 2013
- Pentikousis et al. 2013
- Kempf et al. 2012
- Hampel et al. 2013
- Li et al. 2012
- Jin et al. 2013
- Ali-Ahmad et al. 2013
- Nagaraj and Katti 2014
- Said et al. 2013
- Ghazisaeedi et al. 2013
- Karimzadeh et al. 2014
Literature contributions for SDMN

Mobile backhaul network
- Use cases
 - Traffic routing
 - Traffic management

Mobile core network
- Use cases
 - Traffic routing
 - Traffic management

Use cases
- Admission control
- Traffic routing
- Congestion control
- Mobility Management
- Tunnel-based
- Tag-based
- Flow-based
- Traffic offloading
- Load balancing
- Mobility management

Pentikousis et al. 2013
Kempf et al. 2012
Hampel et al. 2013
Li et al. 2012
Jin et al. 2013
Ali-Ahmad et al. 2013
Nagaraj and Katti 2014
Said et al. 2013
Ghazisaeedi et al. 2013
Karimzadeh et al. 2014
Venmani et al. 2012
Gurusanthosh et al. 2013
Pentikousis et al. 2013
Kempf et al. 2012
Hampel et al. 2013
Li et al. 2012
Jin et al. 2013
Ali-Ahmad et al. 2013
Nagaraj and Katti 2014
Said et al. 2013
Ghazisaeedi et al. 2013
Karimzadeh et al. 2014
Conclusions and future work

❖ **This paper shows…**

❖ How the OpenFlow protocol can be used to assist LTE traffic control management
 ❖ *Backhaul traffic routing*
 ❖ *Bearer admission control*
❖ SDMN literature review, focusing on backhaul and core networks

❖ **As future work…**

❖ Explore traffic control in heterogeneous networks
❖ Improve the proposed mechanisms to support UE mobility