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ABSTRACT
The uncertainty of the demands of grid applications can
cause unpredicted performance and, consequently, can make
ineffective schedules derived for target demand values. To
produce effective results, schedulers need to take into ac-
count the difficulty in estimating the demands of applica-
tions. In this paper, a scheduler based on fuzzy optimiza-
tion is proposed to deal with such uncertainties. It is shown,
via numerical results, that the proposed scheduler presents
advantages when compared to classical schedulers.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Uncertainty, “fuzzy,” and probabilistic reasoning ;
I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Scheduling ; C.2.4 [Computer-

Communication Networks]: Distributed Systems—Dis-
tributed Applications

Keywords
fuzzy optimization, uncertainty, grid networks, task schedul-
ing, linear programming

1. INTRODUCTION
Grid Networks (Grids) have been designed to provide a

distributed computational infrastructure for advanced sci-
ence and engineering [1]. They involve coordinated resource
sharing and problem solving in heterogeneous dynamic en-
vironments to meet the needs of a generation of researchers
requiring large amounts of bandwidth and more powerful
computational resources. Although in its infancy, coopera-
tive problem solving via grids has become a reality, and var-
ious areas from aircraft engineering to bioinformatics have
benefited from this novel technology. Grids are expected
to evolve from pure research information processing to e-
commerce, as has happened with the World Wide Web.
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Central to grid processing is the scheduling of application
tasks to resources. Essentially, scheduling is the decision
making process of matching applications demands to grid
resources and the specification of the time at which resources
should be used to satisfy these demands. Grid resources
comprise the hosts computational and storage capacity as
well as network bandwidth.

The lack of resource ownership by grid schedulers and fluc-
tuations in resource availability requires mechanisms which
will enable grids to adjust themselves to cope with fluctua-
tions. A sudden increase in link load can, for example, in-
crease the time for the transfer of data between the comput-
ers where two tasks reside, thus leading to the necessity of
relocating the tasks to a third computer. Furthermore, the
lack of a central controller implies a need for self-adaptation.
Such autonomous operation of grids has been proposed and
implemented in different systems [2].

Although uncertainty of the demands of applications have
been addressed in parallel systems [3] [4] [5], the few existing
techniques can only be partially utilized since these systems
are usually tightly coupled and the communication demands
have little impact on the performance of the applications.
Conversely, the tasks of grid applications are connected by
shared communication links.

Computational demands can be inferred by executing the
application with a controlled number of parameters [6].
However, these techniques work only for applications which
computational demands increase linearly with the number
of parameters used.

Furthermore, the scheduling problem is an NP-hard prob-
lem [7] and feasible solutions in real time require either
heuristics or approximations [8]. In addition, the compu-
tational complexity is increased by the need to account for
heterogeneous resources and irregular topologies, which con-
trasts to what happens in multiprocessor systems.

This paper introduces a scheduler based on fuzzy opti-
mization for dealing with uncertainties of the demands of
applications. The scheduler accepts as input a set of depen-
dent tasks described by Directed Acyclic Graphs (DAGs).
Scheduling decisions account for unpredicted amounts of
data to be exchanged among tasks.

The makespan given by the fuzzy solution is compared to
those produced by schedulers based on classical optimiza-
tion. Significant speedup values produced by schedulers de-
signed to operate under high levels of uncertainty were ob-
served in the experiments conducted. Moreover, the time
taken by the fuzzy scheduler to produce feasible schedules is
about the same the one taken by its corresponding classical
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scheduler.
This paper is organized as follows. Section 2 introduces a

novel scheduler based on fuzzy optimization theory and Sec-
tion 3 evaluates the effectiveness of the proposed scheduler.
Section 4 describes related works and Section 5 draws some
conclusions.

2. A SCHEDULER FOR DEALING WITH
UNCERTAINTY OF THE DEMANDS OF
APPLICATIONS

In [8], it was introduced a set of eight schedulers offer-
ing solutions which differ in terms of their schedule length
as well as computational complexity. These schedulers can
be executed in parallel to obtain a schedule with the high-
est possible quality within a time period. One of these
schedulers, called ILPDT, considers discrete intervals of time
(∈ Z+) and treats the scheduling problem as an integer lin-
ear programming problem. Although the discretization of
time introduces approximation and a consequent loss of pre-
cision, under certain circumstances, this loss may not be sig-
nificant, and the saving of time can be quite attractive when
compared to a corresponding scheduler which assumes time
as a continuous variable. A fuzzy version of this scheduler
is presented in Subsection 2.2.

2.1 The ILPDT scheduler
The ILPDT scheduler accepts two graphs as input. The

graph G = (VG, EG) represents the grid topology while the
DAG D = (VD, AD) the dependencies among tasks. In G,
VG is the set of m (m = |VG|) hosts connected by the set of
links EG. Hosts are labelled from 1 to m. In D, VD is the
set of (n = |VD|) tasks with integer numbers as labels which
allows a topological ordering of tasks and AD is the set of
dependencies.

The ILPDT scheduler considers that the input DAGs have
a single input task and a single output task. DAGs failing
to satisfy this condition because they have more than one
input or output task can be easily modified by considering
two null tasks with zero processing time and communica-
tion weights. Some characteristics of the DAGs are: Ii:
processing demand of the ith task, expressed as number of
instructions to be processed by the ith task (Ii ∈ R+); Bi,j :
number of bytes transmitted between the ith task and the
jth task (Bi,j ∈ R+); D: set of arcs {ij : i < j and there
exists an arc from vertex i to vertex j in the DAG}. More-
over, grid resources composed of hosts and links have the
following characteristics: TI k: time the kth host takes to
execute 1 instruction (TI k ∈ R+); TBk,l: time for trans-
mitting 1 bit on the link connecting the kth host and the lth

host (TBk,l ∈ R+); δ(k): set of hosts linked to the kth host
in the network, including the host k itself.

The weights of arcs (B) and nodes (I), representing re-
spectively the amount of data to be transferred and the
amount of processing, are furnished by the user. ILPDT out-
puts a Gantt diagram which provides information in which
host each task should be executed, the starting time of task
and the time which data transfer should happen.

The ILPDT scheduler solves a linear integer program
which seeks the value of variables xi,t,k (∈ {0, 1}) and fi

(∈ N
∗). xi,t,k is a binary variable that assumes a value of

1 if the ith task finished at time t in the host k; otherwise
this variable assumes a value of 0; fi is a variable that stores

the time at which the execution of the ith task is finished
(fi ∈ N

∗).
The objective is to minimize the execution time of the

application (Minimize(fn)). The linear integer program
is shown below. For convenience, the following notations is
used: T = {1, . . . , Tmax} (Tmax is the time that the applica-
tion would take to execute serially all the tasks in the fastest
host, i.e., Tmax = min(TI )

Pn

i=1 Ii), J = {1, . . . , n} is the
set of existing tasks of an application and H = {1, . . . , m}
is the set of hosts. The ILPDT formulation is given below:

Minimize fn

such that

X

t∈T

X

k∈H

xj,t,k = 1 for j ∈ J ; (D1)

fj =
X

t∈T

X

k∈H

t xj,t,k for j ∈ J ; (D2)

xj,t,k = 0 for j∈J , k∈H, (D3)
t∈{1,...,⌈IjTIk⌉};

X

k∈δ(l)

⌈t−IjTI l−Bi,jTBk,l⌉
X

s=1

xi,s,k ≥

t
X

s=1

xj,s,l for j∈J , ij∈D, (D4)

for l∈H, t∈T ;

X

j∈J

⌈t+IjTIk−1⌉
X

s=t

xj,s,k ≤ 1 for k∈H, t∈T , (D5)

t≤⌈Tmax−IjTIk⌉;

X

l∈H

VAj,l = 1 for j ∈ {2, ..., n}; (D6)

(|{i : ij ∈ D}| + 1)VAj,l ≤
X

t∈T

xj,t,l+

X

i:ij∈D

X

k∈δ(l)

X

t∈T

xi,t,k for j ∈ {2, ..., n}, (D7)

l ∈ H;

|{i : ij ∈ D}| + VAj,l ≥
X

t∈T

xj,t,l+

X

i:ij∈D

X

k∈δ(l)

X

t∈T

xi,t,k for j ∈ {2, ..., n}, (D8)

l ∈ H;

VAj,l, xj,t,k ∈ {0, 1} for j ∈ J , l ∈ H, (D9)
t ∈ T .

Moreover, Tmin = minTI
P

i∈SP
Ii is the time that the

application would take to execute all the tasks of the shortest
path in the fastest host (SP is the shortest path from task 1
to task n in terms of number of instructions). Tmax and Tmin

are quite useful to reduce the number of variables needed in
the fuzzy formulation.

2.2 The ILP-FUZZY scheduler
The uncertainties of the demands of the applications are

represented by fuzzy numbers in the proposed formulation.
The values of I and B are represented by triangular fuzzy
numbers. In this way, the ith task requires Ii instructions
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with an uncertainty of σ% of this value; the amount of in-
structions is represented by [Ii, Ii, Ii] where Ii = Ii(1−

σ
100

)

and Ii = Ii(1 + σ
100

). In a similar way, the communications

demands are given by [Bi,j , Bi,j , Bi,j ] with a ρ% level of
uncertainty.

The objective function of ILPDT is modified so that the
satisfaction degree λ (∈ [0, 1]) is maximized. The satisfac-
tion degree is inversely proportional to the execution time
given by a schedule. The values of Tmax and Tmin cannot
be computed as in the ILPDT algorithm, given the uncer-
tainty in the DAGs weights, therefore, T ′

max = Tmax(1+ σ
100

)
and T ′

min = Tmin(1 − σ
100

) are used instead. Figure 1 illus-
trates the relationship between λ and the application exe-
cution time (fn). Moreover, the following constraint should
be added to the formulation in order to include the range of
values of fn (∈ [T ′

min, T ′
max]) and the relationship with the

λ value:

1 −
fn − T ′

min

T ′
max − T ′

min

≥ λ (1)

0

1

0 T ′
min T ′

max

λ

fn

Figure 1: Satisfaction Degree.

Since Ii and Bi are now fuzzy numbers, the constraints of
ILPDT need to be changed accordingly. The constraint D3
is:

xj,t,k = 0 for j∈J , k∈H, (2)
t∈{1,...,⌈IjTIk⌉}

These constraints determine that a task (j) cannot termi-
nate until all its instructions have been completely executed.
Since it is not possible to know the exact number of instruc-
tions, Ij is replaced by Ij given that the minimum number
of instructions is the only value that is certainly known.

The constraints D4 are modified to the following formu-
lation:

X

k∈δ(l)

⌈t−IjTI l−Bi,jTBk,l⌉
X

s=1

xi,s,k ≥

t
X

s=1

xj,s,l for j∈J , ij∈D, (3)

for l∈H, t∈T

The constraints in (3) establish that the jth task cannot
start execution before all its predecessors have finished their
execution and transferred the required data by the jth task.
In this way, in order to prevent the potential execution of
the jth task previous to the execution of its predecessors due
to the existing uncertainty on I and B values, Ij and Bij

are respectively replaced by their maximum values given by
Ij and Bi,j .

The last set of modified constraints is D5, given by:

X

j∈J

⌈t+IjTIk−1⌉
X

s=t

xj,s,k ≤ 1 for k∈H, t∈T , (4)

t≤⌈T ′
max−IjTIk⌉

The constraints in (4) establish that there is at most one
task in execution at any one host at a specific time. Since
the only know value of the number of instructions is the
lowest value, the computational uncertainty yields to the
replacement of Ij by Ij .

These set of modifications leads to a new fuzzy scheduler
called ILP-FUZZY.

3. EFFECTIVENESS OF THE ILP-FUZZY
SCHEDULER

To assess the effectiveness of the fuzzy approach, the
schedule produced by the ILP-FUZZY scheduler was com-
pared to the one produced by the ILPDT scheduler. In the
evaluation both schedulers received the same DAGs as in-
put. The degree of uncertainty of the DAGs weights is pro-
vided as input to the ILP-FUZZY scheduler. The Montage
astronomy [9] application was used to generate the input
DAG shown in Figure 2. Weights were randomly chosen
from a uniform distribution [9].

T0

T1 T2 T3 T4

T5 T8

T21

T6T9

T22

T7 T10

T23

T11

T24

T12 T15

T25

T13T16 T14 T17 T18

T19

T20

Figure 2: Tasks DAG used in the experiments.

Thirty grids were generated for the evaluation of the ILP-
FUZZY scheduler by using the Doar-Leslie method which is
largely used to generate Internet topologies. The number of
hosts used is 50, the degree of node connectivity (β) is 0.98
and the ratio between the longest and the shortest links is
0.98.
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Uncertainty values of 40%, 100%, 200% and 400% were
considered. The maximum value of 400% was chosen
following the recommendation in [9]. Although, uncer-
tainty was place on both computational and communica-
tion demands, due to space limitation, results consider-
ing uncertainties only on B values (σ = 0% and ρ ∈
{40%, 100%, 200%, 400%}) are shown in this paper since
communication demand is the most critical one given that
data can be generated in real time.

For each scheduler designed to operate under a specific un-
certainty level, DAGs with diverse uncertainty levels were
used as input. Twenty DAGs with randomly generated
weights were used for each level of uncertainty. In this way,
it is possible to evaluate how well a scheduler designed to
operate under a specific uncertainty level handles a whole
range of uncertainty of the demands of the applications.

To compare the performance of different schedulers, the
speedup was employed. The makespan produced by a sched-
uler and the Tmax of the original DAG (with no uncertainty,
σ = 0 and ρ = 0) were used in the computation of the
speedup.

The schedulers were written in the C programming lan-
guage and the optimization library Xpress version 2006A.1

was used. Programs were executed in a machine with De-
bian GNU/Linux version Lenny operating system.

Figure 3 displays the speedup of the ILP-FUZZY sched-
ulers designed with different uncertainty levels as a function
of the uncertainty of the input DAGs. The ILPDT pro-
duces higher speedup values than those produced by the
ILP-FUZZY schedulers designed to operate under uncer-
tainty levels equal or lower than 100%. ILPDT also per-
forms better for low levels of uncertainty in the input DAG
than the ILP-FUZZY scheduler designed for a 200% level
of uncertainty. However, when the ILP-FUZZY scheduler
is designed for a high degree of uncertainty (400%), it pro-
duces higher speedup values than those produced by the
ILPDT scheduler. For instance, the speedup produced by
ILP-FUZZY for ρ = 400% can be 26% higher than the
ILPDT speedup. Moreover, the ILPDT speedup drops much
faster than those given by the ILP-FUZZY scheduler as a
function of the uncertainty of the DAGs weights.
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Figure 3: Speedup produced by schedulers for un-

certain communication demands.

Results point out that the fuzzy approach is attractive
if schedulers are designed to handle a high level of uncer-
tainty. This can be understood by the lack of precision intro-
duced by fuzzy solutions when their flexibility is quite lim-
ited. However, when the flexibility increases, the enhanced
ability to handle uncertainty of demands overcompensates
potential mistakes made when the range of variation of so-
lutions is limited. Furthermore, the speedup produced by
schedulers designed for a high level of uncertainty is quite
robust to variations of uncertainties of demands.

Comparing the execution time of both schedulers, it
follows that the 90th percentile of the execution time of the
ILP-FUZZY scheduler is 32% lower than that of the ILPDT
scheduler. However, the execution time of the ILP-FUZZY
scheduler for two (out of 30 grids used in the evaluation)
were ten times longer than that of the ILPDT scheduler.
Although the use of the fuzzy scheduler is attractive not
only for the speedup gain but also for time taken to derive
a schedule, one needs to be aware that long execution times
can occur.

4. RELATED WORK
Previous works investigated the issue of uncertainty of de-

mands, specially in parallel systems. In [10], a proposal ori-
ented to cluster and I/O bound applications was developed.
The proposal gathers applications into classes according to
their demands. Applications are monitored during their ex-
ecution and change of class is pursued in case of changes of
the demands of an application. Although this works consid-
ers communication costs, it is a reactive scheme while our
proposal is a preventive one. Moreover, experiments were
conducted in a homogeneous environment with a low num-
ber of hosts.

The research reported in [11] collects metrics of perfor-
mance of parallel applications in supercomputers. Probabil-
ity distributions for performance metrics such as execution
time and host utilization are used to generate synthetic load
to predict performance. This research differs from our work
by the fact that the execution of applications are terminated
in case they exceed a predicted value. Moreover, only inde-
pendent tasks are considered.

In [12], a module that takes into account the available ca-
pacity of a grid is introduced. The module was based on
the middleware “Support Infrastructure to Mobile Appli-
cations” (ISAM). Measurements are collected and used by
bayesian models to predict the performance of real applica-
tions. Uncertainties are introduced in performance predic-
tions. However, uncertainties of the demands of applications
are not considered, specially those related to the transfer of
data among tasks. The NWS (Network Weather Service)
was employed in experiments with homogeneous hosts to
predict the computational demands of the applications.

Two different approaches were compared in [9]. One that
consider only computational demands and the other which
also includes communication demands. These approaches
schedule DAGs of dependent tasks without full knowledge of
them. Uncertainty of DAGs weights is taken into account.
It was shown that the makespan of applications increases
with the degree of uncertainty. However, no scheduler that
accounts the uncertainty of the demands of applications was
proposed. Our work uses the same real scenario of the work
in [9].
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The research described in [13] compares the predicted ex-
ecution time with the measured one. Experiments using a
cluster of the “Enabling Grids for E-sciencE” (EGEE) grid
were conducted. However, only CPU intensive applications
in a specific cluster were considered and not much can be
inferred about other scenarios.

Our work differs from others in the literature by consid-
ering both computation and communications uncertainties
of grid applications with dependent tasks in heterogeneous
grids.

5. CONCLUSION AND FUTURE WORK
The computation and communication demands of grid ap-

plications are usually informed by grid users who can only
make a rough estimation of these demands. The uncertainty
of these demands can cause unpredicted performance and
can make ineffective schedules derived with different target
demand values. Therefore, it is of paramount importance
to take into account uncertainties when scheduling tasks.
Schedules produced should be flexible enough to cope with
uncertainties and yet produce suboptimal, if not optimal,
solutions.

In this paper a scheduler based on fuzzy optimization was
proposed to schedule grid tasks under uncertain knowledge
about their demands. Results indicate that the effectiveness
of this approach relies on the ability to cope with a high level
of uncertainty.

As several grid applications, specially those of e-Science,
generate huge amount of data during its execution, the ap-
proach proposed in this paper seems to be quite attractive
for future implementation in grid systems. Currently we are
investigating the trade-off between the solutions given by
fuzzy schedulers and those given by self-adapting schemes.
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