
Towards a PaaS Architecture for Resource
Allocation in IaaS Providers Considering

Di�erent Charging Models

Cristiano C. A. Vieira1, Luiz F. Bittencourt2, and Edmundo R. M. Madeira2

1
Federal University of Mato Grosso do Sul - Faculty of Computing

Cidade Universitária, Campo Grande/MS - Brasil
2
University of Campinas - Institute of Computing

Av. Albert Einstein, 1251 Cidade Universitária, Campinas/SP - Brasil

Abstract. With the increase in computing infrastructure commerciali-

zation through the pay-as-you-go model, competition among providers

puts the user as a decision agent on which is the best provider to comply

with his/her demands and requirements. Currently, users rely on ins-

tances o�ered as on-demand, reserved, and spot to decide which is the

best resource allocation model over the time. In this work, we present

substantial contributions to compose a PaaS architecture that leverages

di�erent charging models, where we propose the use of a new charging

model called time-slotted reservation. Moreover, we developed an integer

linear program (ILP) to perform the scheduling of incoming requests ac-

cording to di�erent QoS levels, proposing a mapping of those levels into

the charging models o�ered by IaaS providers. Simulations show the ap-

plicability of the ILP in the proposed model, being able to maximize the

number of requisitions executed following the user’s QoS requirements.

Keywords: Cloud Computing, Architecture, PaaS, IaaS, Charging model,

Scheduling

1 Introduction

The increase in the pay-as-you-go model in Infrastructure as a Service (IaaS)
cloud providers allowed corporations to reduce the initial capital needed for IT
infrastructure. This popularization, not coincidently, comes as both higher band-
width is available over the Internet and virtualization technologies maturates.
In this sense, IaaS cloud providers such as Amazon, GoGrid, lixiscale, Windows
Azure, and Ninefold, o�er di�erent charging models to commercialize di�erent
types of services. One of these services is the virtual machine (VM) leasing,
where the user can choose to lease a VM from a variety of hardware configu-
rations (processor speed, processor cores, RAM, storage, and so on). The main
charging models currently available are on-demand (OD), reserved (RE), and
spot (SP), which present di�erences in availability and charged price.

The competition among IaaS providers puts the user as a decision agent
that selects the provider that best matches the application demands and re-
quirements. When the user has many requests with di�erent running times and

This is a pre-print version.
The full version is available at the publisher's website.

II

quality of service (QoS) requirements, it is desirable to automate the decision-
making process of choosing what type of VM, and with which charging model,
should run each request.

In general, the resource allocation problem in IaaS providers can be tackled
with two di�erent objectives: reduce costs to the client [1][2][3] or increase the
provider income guaranteeing the user satisfaction [4][5][6][7]. We are interested
in the first objective, i.e., reducing the running costs for the client of public
cloud providers. A good application scheduling can reduce the allocation costs,
avoiding high budgets when running applications in the cloud.

In this work, we present substantial contributions to compose a PaaS archi-
tecture that helps customers to schedule VM requests on di�erent public clouds.
The architecture leverages di�erent charging models, and we propose the use
of a new charging model, called time-slotted reservation, which enables a bet-
ter utilization for leased instances in the reserved (RE) charging model. The
proposed platform supports two levels of SLA. The first SLA level governs the
interaction between the user and the PaaS, while the second level governs the
the interaction of the PaaS with a set of IaaS providers, and therefore contains
charging models in use.

We consider that the platform belongs to an organization and receives re-
quests for VMs to be allocated to public clouds. In this sense, the main contri-
butions of this work are: a) a PaaS architecture with two SLA levels; b) a new
charging model called “time-slotted reservation-TS”; c) a mapping proposal be-
tween the two SLA levels of the architecture; d) an Integer Linear Program (ILP)
formulations for scheduling; and e) analysis of experimental results.

In the next section we give an overview of the related work. The background
and problem formulation are provided in Section 3. A PaaS architecture is pro-
posed in Section 4. A detailed discussion on simulation set-up, metrics, and
experimental results is given in Section 5. Finally, Section 6 presents the conclu-
sions and the future work.

2 Related Work

The utilization of public clouds to extend the locally available computing power
has been widely explored recently [8][9]. Zhao et. al. [5] present CloudBay, a
platform to o�er resources from di�erent public clouds utilizing auction strate-
gies. Other auction strategies for marketing resources in clouds were proposed
[10][11].

Cloud federation was proposed by Toosi et. al. [6], where a provider uses
resources from other providers in the federation to meet the need for reserved
instances. The provider can trade reserved instances but also sell them in the
on-demand (OD) model. When the client wants to utilize the reserved instance,
the provider can look for an instance in the federation to serve the user.

Chen et. al. [7] developed a new utility model for measuring customer satis-
faction in the cloud. Based on the utility model, they designed a mechanism to
support utility-based SLAs in order to balance the performance of applications

III

and the cost of running them. They presented two scheduling algorithms that
can e�ectively bid for di�erent types of VM instances to make trade-o� between
profit and customer satisfaction.

An ILP is presented by Genez et al. [2] to solve the scheduling problem for
dependent services in SaaS/PaaS with two SLA-levels. They utilize both RE and
OD models in the simulations. Similarly, but for a single SLA level, Bittencourt
et al. [3] propose an algorithm to schedule workflows which considers costs and
deadlines, to select VM configurations from public IaaS providers to expand the
available computational power locally available.

Assunção et al. [1] investigated the benefits that organizations can reach by
using cloud computing providers to increase the computing capacity of their local
infrastructure. They evaluated the cost of seven scheduling strategies used by
an organization that operates a cluster managed by virtual machine technology
and seeks to utilize resources from a remote IaaS provider to reduce the response
time of its user requests.

Although some work uses charging models, a few consider OD, RE and SP
charging models in scheduling. It is interesting to consider the utilization of
di�erent charging models for di�erent QoS categories. Besides, some work deals
with the provider perspective only, i.e., they aim to increase the provider profit.
In this work, we focus on decreasing the scheduling cost for the user.

3 Background and Problem Formulation

Users request VMs from an IaaS provider to run their applications, therefore
we define the user need for a single VM as a VM request. A user can perform
a number of requests to run applications that need di�erent QoS levels. More
specifically, considering execution time as the main QoS parameter, in this work
we classify the VM requests into three QoS categories:

– Fixed-time request (FTRx): In this category, the start time is immediate
and the VM cannot be interrupted (preempted) during its execution.

– Floating-time request: (FTRt): The request may not start immediately, but
once it is started, it cannot be interrupted (preempted).

– Variable-time request (VTR): The request may not start immediately and
it can be interrupted (preempted), i. e., the execution of requests in this
category can be fragmented in smaller parts.

In the face of the wide availability of services o�ered by a variety of IaaS
providers, the user has the burden of choosing which resources from which
provider he/she should utilize. On the other hand, providers have SLAs com-
posed of di�erent charging models utilized to lease the resources, which regulates
how and how much the user will pay for leasing a VM instance. In this context, a
user must choose VMs and charging models according to requests with di�erent
QoS needs. We consider that VMs requests from the user must be allocated over
VMs from IaaS providers with the objective of achieving a low scheduling cost.
Moreover, the set of VMs considered during the scheduling process is already

IV

leased, thus we are dealing with a pre-determined set of already rented VMs
from various providers. Optimizing the use of currently leased VMs allows the
user/organization to determine which VMs are needed, reducing costs.

The problem tackled in this paper is stated as follows: Compute a schedule
S to a set R of VM requests over a set � of VM instances from IaaS providers
with the objective of achieving the smallest allocation cost without violating QoS.

The R set is composed of n VM instance requests r = {k, d, d⇥, qos}, where
r(k) represents the instance type, r(d) represents the total time for which the
instance must be available to the user, r(d⇥) represents a relaxing over d, and
r(qos) = { FTRx | FTRt | VTR } corresponds to the QoS category of the
request. By definition, we have d = d⇥, ⌃ r ⇧ R such that r(qos) = {FTRx};
and d < d⇥, ⌃ r ⇧ R such that r(qos) = {FTRt, V TR}.

Each provider has a set of VM instances available to the user. From the user
perspective, it is necessary to verify how requests can be fulfilled, and at which
costs, utilizing the VMs from the providers. A request must be fulfilled with
the smallest cost without violating its maximum execution time. In this work,
we assume that tasks have no dependency among them. Figure 1 presents the
scenario we are considering in this work.

Fig. 1. Scenario for request submission.

Given a set R of n requests, we must obtain a schedule S = {t, q, c, E},
composed, respectively, of: t, the total execution time of R; q, the number of
requests fulfilled; c, the lowest cost to the user and the scheduling containing the
instance; and E, the time at which each request is to be allocated. Moreover, we
denote, as follows, some definitions utilized in this paper. Let:

– R = {r1, r2, ..., rn}: set containing n requests;

– P = {p1, p2, ..., pv}: set of v providers;

– �i: set of instances available to the user in the provider pi;

– � =
vS

i=1
�i:set of all instances available to the user;

– Bs1: set of PaaS charging models;

– Bs2
i : IaaS providers i charging models set;

– m: number of instances in � .

V

4 Towards a PaaS Architecture

Considering the problem formulated in Section 3, we present substantial contri-
butions to compose a PaaS that receives a set of VM requests and performs the
scheduling of these requests over a set of instances available from IaaS providers.
The objective is to compute a schedule that minimizes the execution costs to
the user 3. Next, we present the PaaS architecture, proposing a new charging
model and a mapping between the two levels of SLA, and an ILP to compute
the schedule in this architecture.

4.1 PaaS Architecture

The proposed architecture is composed of three layers: application, business,
and infrastructure. Figure 2 presents the platform architecture. The application
layer receives a set of requests R and performs their scheduling over the instan-
ces available to the PaaS utilizing a scheduling algorithm. The business layer is
composed of the allocation strategies and the charging models, both of which
utilized by the scheduler to allocate a request r in a provider pi. The business
models in this layer can be changed with no interference in the models made
available by the IaaS providers. The infrastructure layer is responsible for main-
taining information to manage and monitor the IaaS providers used by the PaaS.
We consider all requests are allocated to the IaaS providers.

Fig. 2. Architecture utilized in the VM scheduling.

Two SLA levels are present in the platform. The first level acts in the in-
teraction between the user and the PaaS, while the second level is between the
interaction among the PaaS and the IaaS providers. Charging models belonging
to level 1 are located in the business layer, and charging models belonging to
the second level refer to the models adopted by the IaaS providers.

3
The proposed PaaS can be extended to act as a Broker [12], where it could lease VMs

from the IaaS providers and o�er them to the users. However, it would be necessary

to consider economic aspects to enable this broker to be profitable. At this point,

we do not consider this implementation as a profitable broker.

VI

4.2 Increasing Instance Utilization

An RE instance imposes the payment of an initial surcharge to o�er a discounted
price during the VM utilization. This strategy can be advantageous to the cus-
tomer only if he promotes a high utilization of the reserved instance, otherwise
the cost per time unit can end up larger than the one for the OD instance. For
example, Fig. 3 presents scenarios where the customer utilizes 10%, 20%, 40%.
60%, 80%, and 100% of the time of RE instances for 1 and 3 years, considering
prices and configurations from Amazon EC24. A one year usage of an OD in-
stance costs $1,051.20, while for 100% of utilization for an RE instance would
cost $644.22, including the initial surcharge. On the other hand, utilizing the RE
instance only 25% of the time would have a cost of $368.98. The same use (2,190
hours) in the OD charging model would cost $262.80. Therefore, low utilization
makes the RE instance to be more expensive than the OD instance. Moreover,
we can see from the limit economy line that, for current market prices, the cus-
tomer should utilize more than 40% of an instance reserved for one year, and
20% for an instance reserved for three years to them to be worthless.

OD−Medium
RE−Medium

OD−Large

RE−Large
OD−Extra Large
RE−Extra Large

Limit Economy

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120

Co
st

 ($
)

Workload (%)

1 Year

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120

Co
st

 ($
)

Workload (%)

3 Years

Fig. 3. Comparative costs for 1 and 3 years reservation against on demand instances.

This analysis shows that the user can reduce costs by increasing utilization
of RE instances. Following this, we propose a new charging model called “Time-
slotted reservation - TS”, where the user schedules a VM utilization in slots
of time. In this model, requests cannot be interrupted. This enables better uti-
lization of RE instances, minimizing the cost per time unit. We added the new
TS charging model to Bs1, as well as the OD and SP models. Thus, we have
that Bs1 = {OD | TS | SP} is placed in the business layer of the architecture
presented in Fig. 2.

4
From: Amazon - http://aws.amazon.com/ec2/pricing/ in 05/2013.

VII

4.3 A Mapping Proposal Between the Two SLA Levels of the
Architecture

As presented in Fig. 2, the platform is composed of two SLA levels. Conside-
ring the QoS categories (FTRx, FTRt, VTR), we define a conceptual model
of interaction between these QoS categories, the level-1 SLA set Bs1, and the
level-2 SLA set Bs2, as illustrated in Fig. 4(a). The conceptual model allows new
charging models to be incorporated without interfering in the charging models
currently available from IaaS providers.

Figure 4(b) presents a mapping proposal between the two levels in the con-
ceptual model. Other possibilities can be explored, mainly with the appearance
of new models. In this work we focused in the mapping from Fig. 4(b).

(a) Conceptual model (b) Mapping proposal

Fig. 4. a)Model of interaction between QoS categories and SLAs at levels 1 and 2. b)

Proposed charging model mapping between SLA1 and SLA2.

The presented mapping proposal has the objective of mapping a charging
model from Bs1 to another from Bs2. The SP model at level 2 has low availability
guarantee, and therefore it can receive only mappings from the SP model from
level 1. The OD and TS models at level 1 can be mapped to both OD and RE
models at level 2. However, there is a scheduling priority in the mapping of RE
over the OD, aiming at higher utilization (and thus lower prices) using the RE
charging model.

4.4 Requests Scheduling

The requests scheduling is obtained utilizing the ILP and two heuristics.

An Integer Linear Program (ILP) Formulation for Scheduling
The integer linear program solves the scheduling problem through the binary

variables w, x, y and z and the constants C, M and K as follows:

– wr: binary variable that assumes the value 1 if request r is executing; other-
wise it assumes the value 0;

VIII

– xr,⇤: binary variable that assumes the value 1 if request r is executing in
VM ⇤ on independent time t; otherwise it assumes the value 0;

– yr,t,⇤: binary variable that assumes the value 1 if request r is executing in
VM ⇤ on the time t; otherwise it assumes the value 0;

– zr,t,⇤: binary variable that assumes the value 1 if request r with r(qos) =
{FTRt} starts executing on time t in VM ⇤; 0 otherwise;

– Ct,⇤: constant that assumes the cost per time unit for using the VM ⇤.
– M: su⇥ciently large constant that assigns a weight for each request.
– K: su⇥ciently large constant used to ensure FTRt requests start once.

We formulate the objective function F =
P
r⇥R

P
t⇥T

P
⇤⇥�

(yr,t,⇤⇥Ct,⇤)�
P
r⇥R

(wr⇥

M) that computes the scheduling of R in � aiming lower cost allocation. Thus,
we want to minimize F subject to:

r(d⇥)X

t=1

yr,t,⇤ = r(d)⇥ xr,⇤; ⌃r ⇧ R, ⌃⇤ ⇧ � (1)

X

⇤⇥�

TX

t=d⇥+1

yr,t,⇤ = 0; ⌃r ⇧ R (2)

X

⇤⇥�

xr,⇤ = wr; ⌃r ⇧ R (3)

X

r⇥R
yr,t,⇤ ⇤ 1; ⌃t ⇧

1, r(d⇥)

�
, ⌃⇤ ⇧ � (4)

X

r⇥R

yr,t,⇤ = 0; ⌃t ⇧ T ;⇤ ⇧ � ;MF (r,⇤) = 0 (5)

r(d)�K ⇥ (1� zr,t,⇤) ⇤
r(d)+t�1X

s=t

yr,s,⇤ ⇤ r(d) +K ⇥ (1� zr,t,⇤) (6)

⌃r ⇧ R, ⌃t ⇧

1, r(d⇥)� r(d) + 1

�
, ⌃⇤ ⇧ �, r(qos) = {FTRx, FTRt}

LX

t=1

zr,t,⇤ = xr,⇤; ⌃r ⇧ R, ⌃⇤ ⇧ (�o
[

�a) (7)

wr, xr,⇤, yr,t,⇤, zr,t,⇤ ⇧ {0, 1}; ⌃r ⇧ R, ⌃t ⇧ T , ⌃⇤ ⇧ � (8)

The ILP utilizes the binary variables wr, xr,⇤, yr,t,⇤, zr,t,⇤ and constants K,
M and Ct,⇤ to compute a schedule that minimizes the cost, but also utilizing
VM instances from the IaaS providers that guarantee the QoS of each request.
Moreover, it is built over the mapping presented in Fig. 4(b).

The constraints (C-1) and (C-3) specify that a request, if executed, must be
executed in r(d) time units and in a single VM. The constraint (C-2) specifies
that a request mustn’t be executed in t > r(d⇥), while the constraint (C-4)

IX

specifies that a VM must perform one request per time. The constraint (C-
5) specifies that a request must be executed considering the proposed charging
model mapping between SLA1 and SLA2 presented in Fig. 4(b). The constraints
(C-6) and (C-7) are used to ensure FTRt requests are executed so atomic. The
constraint (C-1) ensures the atomicity for FTRx requests. The last constraint
(C-8), specifies that the variables of this ILP, called w, x, y, and z, will only
assume the binary values. MF() is a mapping function.

The schedule generated is the best schedule that can be achieved with the
highest number of requests fulfilled. A request cannot be partially fulfilled. How-
ever, the number of VMs available may not su⇥ce to run all requests. In this
case, the ILP returns the schedule with the highest number of requests that can
be fulfilled, and the smallest cost to run them.

The constant M is used to achieve the schedule with the highest number of
requests, since it establishes a weight for the variable wr. This means that the
larger the number of wr variables set to true, the smaller will be the ILP result.

Let Ct be the total cost returned by the ILP. Then, s.q = ⌥�Ct
M � + 1 and

s.c = (s.q⇥M)�Ct. Let dm and ⇤m, respectively, be the largest execution time
among all requests r ⇧ R and the largest execution cost per time unit among all
VMs ⇤ ⇧ � . Following this, s.q and s.t can be computed as stated before only if
M > dm⇥⇤m. This is how the constant M must be defined, otherwise it would
compromise the result obtained by the ILP.

Heuristics We implemented two heuristic algorithms to compute the scheduling
of R over VMs of � : 1-FIFO (First-in First-out) and 2-DO (Doubly Ordered):

1. FIFO: Performs the request scheduling using the strategy of allocation the
first request in the first VM possible, considering the time duration, the
relaxation and the QoS category. Let l be the highest value of d⇥ among all
requests. The asymptotic complexity is O(nml).

2. DO: Order R in non-increasing order of size (execution time) and � in non-
decreasing order of execution cost per time unit. Use the FIFO algorithm to
compute the scheduling. This is a straightforward adaptation of the Max-Min
algorithm [13], focusing on the execution of requests with greater duration in
VMs with lower cost. Its asymptotic complexity is O(nml+n log n+m logm).

5 Experimental Results

We implemented the platform proposed in this work using JAVA, and the sche-
duler using IBM ILOG CPLEX with default configuration. The mapping model
proposed in Fig. 4 was utilized in the scheduling. The simulations were run in a
dual-processor Xeon Quad-Core with 32GB of RAM. The metrics utilized were
the number of fulfilled requests and the scheduling cost.

The number of VMs in some cases can be insu⇥cient to fulfill all requests,
when the execution cost of the R set must be analyzed considering only the

X

fulfilled requests. To minimize the execution cost and maximize the number of
fulfilled requests, we verified the scheduling result when relaxing the maximum
execution time of each request in FTRt and VTR categories. The experiments
were conducted with the requested time extended by 10%, 30%, 50%, and 100%.
We do not extend d⇥ for FTRx requests since this would violate the QoS.

5.1 Simulation Setup

We evaluated the number of fulfilled requests, execution costs, and we also as-
sessed the behavior of the scheduler in the platform when d⇥ is varied. The
scenario has four providers with a total of m = 25 VMs, with characteristics
distributed as shown in Table 1.

Table 1. VMs configuration available to the PaaS users.

Provider OD $ RE $ SP $ Provider OD $ RE $ SP $

1 3 10.00 2 5.00 3 1.00 2 3 11.00 1 6.00 1 2.00

3 2 12.00 2 7.00 2 3.00 4 2 13.00 3 8.00 1 4.00

Three experiments, E1, E2, and E3 were run, each one with 30 sets of re-
quests, Ei = {R1, R2, ..., R30}. d⇥ was in the set {10%, 30%, 50%, 100%}. In each
experiment, the number of requests in each set was E1: |Rj | = 30, E2: |Rj | = 45,
E3: |Rj | = 60, 1 ⇤ j ⇤ 30. The r(d) of each request in each set Rj ⇧ Ei is ran-
domly taken from the (1, 15) interval. The composition r(d⇥) is done by summing
a value t1 randomly taken from the same (1, 15) interval: r(d⇥) ⌅ r(d)+ t1. The
number of requests in the FTRx, FTRt, and VTR categories are, respectively,
20%, 40% e 40%. We defined M = 1.000.

5.2 Results

We have run the simulations to compare the three approaches: ILP, FIFO, and
DO. In the first experiment, E1, the number of requests is close to the number of
VMs available to the PaaS, while E2 and E3 have more requests than the number
of VMs available. Figure 5 presents the results obtained by the three algorithms
in the three experiments. The schedule cost found by the ILP is lower than
the costs found by FIFO and DO. Moreover, the ILP was able to fulfill more
requests than the other algorithms, satisfying the QoS of almost 100% of the
requests with the original d⇥.

Figures 5(g), 5(h) and 5(i), present the cost per fulfilled requests for the
schedules found in experiments E1 to E3. The ILP results presented lower costs
per request when compared to the FIFO and DO algorithms. In experiment
E1, the ILP reduced costs from 25% (0% relaxation) to 35% (100% relaxation)
in relation to FIFO, and from 6% to 3% in relation to DO. This di�erence is
enlarged with more requests, reaching 33% to 37% in relation to FIFO, and from
27% to 19% in relation to DO for experiment E3 (60 requests).

XI

 96
 98

 100
 102
 104

Av
er

ag
e

fu
lfil

le
d

re
q.

(%
) E−1: 30 Req.

a)ILP
FIFO

DO

 85
 90
 95

 100
 105

E−2: 45 Req.

b)

 85
 90
 95

 100
 105

E−3: 60 Req.

c)

 700
 950

 1200
 1450
 1700
 1850

Av
er

ag
e

to
ta

l c
os

t($
)

d)

 1200
 1450
 1700
 1950
 2200
 2450 e)

 1500
 1900
 2300
 2700
 3100
 3450 f)

 30
 35
 40
 45
 50
 55

 0 20 40 60 80 100

Cu
st

 p
er

 R
eq

.($
)

Relaxation (%)

g)

 30
 35
 40
 45
 50
 55

 0 20 40 60 80 100
Relaxation (%)

h)

 30
 35
 40
 45
 50
 55

 0 20 40 60 80 100
Relaxation (%)

i)

Fig. 5. Results for experiments E1, E2, and E3.

Results showed in this section suggest that the presented charging model
allows a better utilization of RE instances, reducing costs from the user pers-
pective. Furthermore, the presented ILP was able to reduce costs and fulfill a
higher number of requests than FIFO and DO algorithms in IaaS VMs within
the PaaS proposal considering the TS charging model.

6 Conclusions and Future Work

We presented substantial contributions to compose a PaaS architecture and a
platform to schedule requests on a set of leased VMs from IaaS providers. We
proposed a mapping of currently existing charging models to three di�erent
quality of service requirements from the users requests, also introducing the
Time-Slotted Reservation charging model. The objective of the proposal is to
allow a better utilization of the leased VMs from a set of IaaS providers in order
to reduce costs, avoiding the lease of new VMs and helping to determine if any
leased VM contracts could be finished. Moreover, we propose an integer linear
program (ILP) scheduler that considers the leased VMs, their costs, and the
quality of service of requests to maximize the number of fulfilled requests and
reduce costs. Indeed, the ILP presented better results than two heuristics used in
the comparison, allowing more requests to be fulfilled without QoS violation with
the use of the time-slotted reservation, but also reducing the cost per request.

XII

As future work we consider the development of dynamic mappings between the
two SLA levels according to existing charging models and their prices.

Acknowledgment

We would like to thank FAPESP, CNPq, and CAPES for the financial support.

References

1. Assunção, M.D., Costanzo, A., Buyya, R.: A cost-benefit analysis of using cloud

computing to extend the capacity of clusters. Cluster Computing 13(3) (2010)

335–347

2. Genez, T.A.L., Bittencourt, L.F., Madeira, E.R.M.: Workflow scheduling for SaaS

/ PaaS cloud providers considering two SLA levels. In: Network Operations and

Management Symposium (NOMS), 2012 IEEE. (april 2012) 906 –912

3. Bittencourt, L.F., Senna, C.R., Madeira, E.R.M.: Scheduling service workflows for

cost optimization in hybrid clouds. In: Proceedings of the International Conference

on Network and Service Management (CNSM), 2010. (oct. 2010) 394 –397

4. Dı́az Sánchez, F., Doumith, E., Al Zahr, S., Gagnaire, M.: An economic agent

maximizing cloud provider revenues under a pay-as-you-book pricing model. In:

Economics of Grids, Clouds, Systems, and Services. Volume 7714 of Lecture Notes

in Computer Science. Springer Berlin Heidelberg (2012) 29–45

5. Zhao, H., Yu, Z., Tiwari, S., Mao, X., Lee, K., Wolinsky, D., Li, X., Figueiredo,

R.: Cloudbay: Enabling an online resource market place for open clouds. In:

Proceedings of 5th IEEE/ACM International Conference on Utility and Cloud

Computing. UCC 2012, Chicago, USA (2012)

6. Toosi, A.N., Thulasiram, R.K., Buyya, R.: Financial option market model for

federated cloud environments. In: Proceedings of 5th IEEE/ACM International

Conference on Utility and Cloud Computing. UCC 2012, Chicago, USA (2012)

7. Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeo�s
between profit and customer satisfaction for service provisioning in the cloud. In:

Proceedings of the 20th international symposium on High performance distributed

computing. HPDC ’11, New York, NY, USA, ACM (2011) 229–238

8. Konstantinou, I., Floros, E., Koziris, N.: Public vs private cloud usage costs:

the stratuslab case. In: Proceedings of the 2nd International Workshop on Cloud

Computing Platforms. CloudCP ’12, New York, NY, USA, ACM (2012) 3:1–3:6

9. Khajeh-Hosseini, A., Greenwood, D., Sommerville, I.: Cloud migration: A case

study of migrating an enterprise it system to iaas. In: Proceedings of the 2010 IEEE

3rd International Conference on Cloud Computing. CLOUD ’10, Washington, DC,

USA, IEEE Computer Society (2010) 450–457

10. Garg, S., Venugopal, S., Buyya, R.: A meta-scheduler with auction based resource

allocation for global grids. In: 14th IEEE International Conference on Parallel and

Distributed Systems, 2008. ICPADS ’08. (dec. 2008) 187 –194

11. Mihailescu, M., Teo, Y.M.: On economic and computational-e⇥cient resource pric-

ing in large distributed systems. In: Proceedings of the 2010 10th IEEE/ACM In-

ternational Conference on Cluster, Cloud and Grid Computing, Washington, DC,

USA (2010) 838–843

XIII

12. Raj, G.: An e⇥cient broker cloud management system. In: Proceedings of the

International Conference on Advances in Computing and Artificial Intelligence.

ACAI ’11, New York, NY, USA, ACM (2011) 72–76

13. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on

nonidentical processors. J. ACM 24(2) (April 1977) 280–289

