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Abstract

This paper proposes three new hybrid mechanisms for the scheduling of grid tasks,
which integrate reactive and proactive approaches. They differ by the scheduler used
to define the initial schedule of an application and by the scheduler used to reschedule
the application. The mechanisms are compared to reactive and proactive mechanisms.
Results show that hybrid approach produces performance close to that of the reactive
mechanism, but demanding less migrations.

1 Introduction

In order to provide the Quality of Service (QoS) required by applications, grids must employ
efficient mechanisms for the scheduling of tasks [13] (grid applications are composed by a set
of tasks), assuring that the mapping between tasks and hosts will minimize the execution
time of grid applications, also known as makespan. Scheduling mechanisms must also cope
with the uncertainties of the demands of grid applications as well as those of the resource
availability [2, 3].

In general, two opposite approaches can be adopted for grid scheduling: the reactive
and the proactive approaches. In reactive mechanisms [4, 14, 10, 15], resource monitoring
is used to update information about the grid state during the execution of applications, for
the verification of the maintenance of the effectiveness of the initial schedule. Migrations of
tasks can be proposed to improve performance.

In the proactive approach, the degree of uncertainty on the values of application demands
and resource availability are provided as input to the scheduler. One way to deal with
such uncertainties is to formulate the scheduling problem as a fuzzy optimization problem
[7, 9, 6, 5]. The proactive approach avoids the overhead caused by the re-computation of
the schedules and by task migration. Besides, it does not need frequent monitoring and

*Institute of Computing, University of Campinas, Campinas, SP, Brazil, 13089-971.
c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.
Curi, R.L.; Batista, D.M.; da Fonseca, N.L.S., Robust hybrid mechanisms for scheduling of grid tasks
In Proc. of 2011 IEEE Latin-American Conference on Communications (LATINCOM), pg. 1-6, 2011,
doi:10.1109/LatinCOM.2011.6107411

1



2 Curi, Batista e Fonseca

checkpointing system as in the reactive approach. One disadvantage is that opportunities
for improving the schedule are not taken.

This paper introduces three new mechanisms, denominated as hybrid mechanisms, that
capitalize on the benefits of both reactive and proactive approaches. These mechanisms
are oriented to grid applications composed of a set of dependent tasks. They are evaluated
and compared to those based on reactive approach [4] and on proactive approach [6, 5].
Moreover, two new grid schedulers are proposed to be used in these mechanisms.

In [10], both proactive and reactive mechanisms in grid scheduling were used for building
fault tolerant grids. A scheduler based on an evolutionary algorithm as well as Anycast were
employed. The difference of this proposal to those in this paper is that it aims at handling
failures only, and it ignores the variation of resource availability. In [15], a self-healing
approach is proposed to perform proactive task migration in High-Performance Computing
environments, which is also oriented to provide fault tolerance. Moreover, the works in
[10] and [15] ignore the entry of new resources when evaluating the need of task migration.
In contrast, the hybrid mechanisms proposed in this paper considers changes in resource
availability of both types (failures and increase or decrease of availability) and it prevents
unnecessary migrations.

The remainder of this paper is organized as follows: Section 2 introduces three new
hybrid mechanisms and two new schedulers. Section 3 presents the experiments conducted
to analyze the mechanisms and Section 4 concludes the paper.

2 Hybrid mechanisms

If on one hand, proactive mechanisms do not imply overhead due to monitoring, rescheduling
and task migration, they do not react to changes in resource availability. Conversely, reactive
mechanisms are capable of reacting, but imply on the mentioned overhead, and schedules
produced do not consider uncertainties on the information provided to the schedulers.

The proposed hybrid mechanisms follows the reactive mechanisms cycle, but schedules
are given by proactive schedulers. In this way, react to changes can be as immediate as
in the reactive mechanisms and the need for changes can be reduced by the consideration
of uncertainties in demands and resource availability. Variations of hybrid mechanisms are
analyzed by considering combinations of the use of proactive schedulers either at the initial
scheduling step and at the rescheduling steps.

In addition to the comparison between the proactive and the reactive approaches, this
paper attempts to answer several questions, such as: which of the two approaches decreases
the number of migrations more significantly; what is the gain given by the employment of
the proactive approach when adopted at different steps of the reactive approach cycle; and
which of these approaches leads to shorter makespan values.

Since the performance of the mechanisms depends heavily on the schedulers used, two
new schedulers, which are revised versions of existing schedulers in [4, 6], are proposed in
Subsection 2.1, and used by the three mechanisms presented in Subsection 2.2.
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2.1 Schedulers

The schedulers proposed are based in two existing schedulers: the IPDT [4] and the IP-
FULL-FUZZY [6]. The first is commonly used in reactive mechanisms, while the second in
proactive mechanisms. The requirements of the application given as input are represented
by Directed Acyclic Graphs (DAGs), in which nodes correspond to tasks and arcs to the
dependencies among tasks, i.e., if task i has an arc directed to task j, then task j depends on
data computed by task i. The weights of the nodes represent the number of instructions of
each task and the weights of the arcs represent the amount of bits that must be transferred
from one task to the other. The grid given as input is represented by a graph, in which the
nodes correspond to the hosts and the edges correspond to the links. The weights of the
nodes give the available processing capacity, in minutes/instruction, and the weights of the
edges the inverse of the available bandwidth, given in minutes/bit.

The IPDT solves an integer linear programming problem. Time is discretized and de-
fined as T = {1, . . . , Tmax}, where Tmax corresponds to the ceiling of the makespan reached
when all the tasks are executed sequentially in the fastest host. The objective function of
the problem is the minimization of the makespan, which must be at most equal to Tmax.
The set of tasks is represented by J = (VJ , EJ), where EJ = D is the set of arcs {ij : i < j,
and there exists an arc from vertex i to vertex j in the DAG}, i.e., the dependencies of
the application. The set of hosts is represented by H = (VH , EH). δ(l) is the set of hosts
connected with the host l, including l itself. Ii corresponds to the weight of the task i,
Bi,j corresponds to the weight of the arc between the tasks i and j, TIl corresponds to the
weight of the host l and TBk,l corresponds to the weight of the link between the hosts k
and l.

xi,t,k is a binary variable that has value 1 if task i execute in the host k finishing at time
t, and 0 otherwise.

The formulation adopted in the experiments, which is called IPDT-2, is showed next:

Minimize
∑
t∈T

∑
k∈H

t xj,t,k

subject to∑
t∈T

∑
k∈H

xj,t,k = 1 for j ∈ J ; (D1)

xj,t,k = 0
for j ∈ J , k ∈ H, t ∈ {1, . . . , dMC + IjTI ke}; (D2)

∑
k∈δ(l)

t−dIjTI l+Bi,jTBk,le∑
s=1

xi,s,k ≥
t∑

s=1

xj,s,l

for i, j ∈ J , ij ∈ D, l ∈ H, t ∈ T ; (D3)



4 Curi, Batista e Fonseca

∑
j∈J

t+dIjTI ke−1∑
s=t

xj,s,k ≤ 1

for k ∈ H, t ∈ T , t ≤ Tmax − dIjTI ke; (D4)
xj,t,l ∈ {0, 1} for j ∈ J , l ∈ H, t ∈ T . (D5)

The IPDT-2 differs from the IPDT by the constraints D2, D3 and D4. Constraint D2
must be applied to t ∈ {1, . . . , dMC+ IjTI ke}, where MC is related to the fact that a task
can start only after all the dependencies to the specific task on the longest dependency path
have finished. Constraints D3 and D4 put t out of the ceiling operation. When compared to
the original formulation [4], these changes allow tasks to be started earlier than they would
be in IPDT, and as a consequence there is a decrease of the makespan.

Constraint D1 establishes that each task j must be executed in a single host k, finishing
at time t. Constraint D2 establishes that a task j executing on host k can not finish before
the end of the last task in the longest dependency path starting in the initial task 0 and
ending on task j, when these tasks are executed sequentially on the fastest host (MC).
Constraint D3 establishes that task j can start only after it has received the required data
from all the tasks it depends on. Constraint D4 establishes that only a single task can be
executed at a time on each host. Constraint D5 establishes the domains of the variables x.

The IP-FULL-FUZZY is based on a fuzzy optimization problem. It uses triangular
fuzzy numbers to model the values of the computational and the communication demands,
processing capacity of the hosts and available bandwidth of network links. These values are
given as intervals [min,max] that represent a fuzzy set. Each point x ∈ R is associated to a
value of the membership function, µ(x) ∈ [0, 1]. Let c = min+max

2 , then the fuzzy numbers
used are of the type [min, c,max], where:

µ(x) =



0 , for x < min
x−min
c−min , for min ≤ x ≤ c

x−max
c−max , for c < x ≤ max

0 , for x > max

The triangular fuzzy numbers are obtained considering the uncertainty levels given as
input to the scheduler: σ is the uncertainty level associated to the tasks, ρ is the uncertainty
level associated to the dependencies, χ is the uncertainty level associated to the hosts and
ω is the uncertainty level associated to the links. Therefore, the amount of instructions of
task i is given by Ĩi = [Ii, Ii, Ii], where Ii = Ii(1 − σ

100) and Ii = Ii(1 + σ
100). The amount

of bits of dependency ij is given by B̃i,j = [Bi,j , Bi,j , Bi,j ], which is computed in the same

way. The processing capacity of host k is given by T̃ Ik = [TIk, T Ik, T Ik] and the available

bandwidth between the hosts k and l is given by T̃Bk,l = [TBk,l, TBk,l, TBk,l].
The fuzzy optimization problem is also modeled as an integer linear programming prob-

lem, which is obtained by transforming the fuzzy constraints to the corresponding crisp
constraints [17]. In this transformation, T

′′
max is the maximum time value and it is given



Robust hybrid mechanisms for scheduling of grid tasks 5

by T
′′
max = Tmax(1 + σ

100)(1 + χ
100). In the formulation adopted in the experiments, called

IP-FULL-FUZZY-2, a new heuristic is used to find the value of T
′′
max, aiming at decreasing

the complexity of the integer linear programming problem. It makes the solution faster and
allows lower discretization values. Therefore, the new T

′′
max is given by T

′′
max = Tmax + Tf ,

where Tf is the larger ending time of the tasks already executed and it is computed in
the rescheduling process. If the value of T

′′
max leads to an unfeasible problem, then, let

T
′
max = T

′′
max, the reschedule is produced again with the new value of T

′′
max given by

T
′
max + Tf . It is repeated until a feasible solution is reached. It does not cause a sig-

nificant increase in the time spent to produce the schedule at the rescheduling step, because
the solution given by the optimization library is faster when the problem is unfeasible than
when it is not. T

′′
min corresponds to the lowest execution time of the application, and it is

equal to the time spent executing, in the fastest host, the instructions of the tasks belong-
ing to the shortest path starting from the initial task 0 and finishing at task n − 1 (SP ).
Therefore, T

′′
min is given by T

′′
min = min({TIk|k∈VH}) ×

∑
i∈SP Ii. λ ∈ [0, 1] corresponds

to the degree of satisfaction of the schedule proposed and it is inversely proportional to
the reached makespan fn. Due to the limited space in the paper, only the integer linear
programming formulation is presented. Actually, only the constraints that differ from those
of the IPDT-2 are presented.

The formulation adopted considers that the capacity of hosts and links can only decrease,
and never increase. This is realistic since it aims to produce a schedule robust in the worst
case. Moreover, the consideration of greater availability of resources can be dangerous,
since it leads to poor performance when the assumption is false. The formulation differs
from that of the IPDT-2 in: the objective function (maximization of λ); the addition of the
constraint F1, which establishes a relation between λ and fn (the ending time of the last
task); and constraint F4, which consider the maximum time of processing and transmission
of data, preventing a task to be executed before its predecessors.

The new constraint and the changed one is showed next:

fn ≤ (1− λ)T
′′
max + λT

′′
min; (F1)

∑
k∈δ(l)

t−dIjTI l+Bi,jTBk,le∑
s=1

xi,s,k ≥
t∑

s=1

xj,s,l

for i, j ∈ J , ij ∈ D, l ∈ H, t ∈ T ; (F4)

2.2 Mechanisms

Three new mechanisms are proposed. They differ by the schedulers used in each phase of
their operation. The hybrid1 mechanism uses the IP-FULL-FUZZY-2 scheduler to produce
the schedules at the initial scheduling and at rescheduling steps. The hybrid2 mecha-
nism uses the IP-FULL-FUZZY-2 to produce the initial schedule and the IPDT-2 at the
rescheduling steps. The hybrid3 mechanism uses the IPDT-2 to produce the initial schedule
and the IP-FULL-FUZZY-2 at the rescheduling steps.
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Figure 1: Hybrid mechanisms.

The operation of the hybrid mechanisms is illustrated in Figure 1. The difference be-
tween the mechanisms is the scheduler used in the initial scheduling and the one used in
the rescheduling steps. The initial schedule is produced and, periodically, the rescheduling
process is executed. At rescheduling steps, each task that have already started its execu-
tion, and have not finished yet, is split into two: one containing the instructions already
executed, and the other containing the remaining instructions. This operation is illustrated
in Figure 2, where a task T5, that is executing in the host h1, is split into tasks T5

′
and

T5
′′
, with T5

′
containing the instructions already executed and being fixed to run in h1,

and T5
′′

containing the instructions to be executed in the new host if it is scheduled to
a host different from h1. The arc directed from T5 to T8, now is directed from T5

′′
to

T8. The arc between T5
′

and T5
′′

has weight corresponding to the amount of data to be
transferred from h1 to the new host in case migration occurs. A schedule is produced to
the new DAG originated from this operation. The new tasks generated by the splitting are
migrated only if migrations lead to a makespan lower than that of the actual schedule.

The makespan of the actual schedule is computed by the “Makespan Calculator” com-
ponent, considering the remaining instructions, of all tasks, to be executed on the new
grid state. It is important to observe that the calculation of the makespan when migration
occurs considers the time spent with data transfer and task migration.

Besides the three hybrid mechanisms proposed, three other are evaluated: the reactive,
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Figure 2: Splitting of a task for the rescheduling.

which uses the IPDT-2 to produce the initial schedule and the schedules at rescheduling
steps; the proactive, which uses the IP-FULL-FUZZY-2 to produce a single schedule; and
the non-proactive, which produces a single schedule given by the IPDT-2. The comparison
of the six mechanisms considers different levels of fluctuation. The following metrics are
evaluated: makespan, average number of migrations and computational demand, that in-
cludes the total processing time spent on the scheduling and rescheduling processing. The
makespan is useful to analyze the quality of the schedules and migrations produced. The
average number of migrations is useful to analyze the network interference caused by the
mechanisms. The computational demand is useful to analyze if the schedules and migra-
tions produced can be obtained in a feasible time in relation to the time required to the
execution of the application.

3 Performance Evaluation

Simulations were conducted to compare the performance of the hybrid mechanisms with the
proactive, reactive and non-proactive mechanisms. A program was written in C to simulate
the operation of the six mechanisms. The schedulers (IPDT-2 and IP-FULL-FUZZY-2)
were implemented using the libraries provided by the Fico Xpress Optimization Suite 7 [8]
with support to multi-core. All the experiments were executed in a computer equipped with
an Intel Xeon 2.27GHz 64-bit Quad-core, 6GB of RAM and running the Debian squeeze
operating system.

The same inputs were provided to the six mechanisms. The DAG of the simulated ap-
plication is shown in Figure 3. It is based on an application of quantum chemistry called
WIEN2K [12], developed at the Vienna University of Technology [16]. The weights of the
tasks in Figure 3 are in the range [112,252], on a scale of 105 millions of instructions, and
the weights of data dependencies are in the range [112,308], on a scale of 106 bits. The
topologies of the simulated grids were generated by the Barabasi-Albert model [1], a model
used to generate network topologies similar to those found in the Internet, by the software
BRITE [11]. The values of the available bandwidth were obtained randomly from a uniform
distribution in the interval [10,1024]Mbps and the available processing capacities of the com-
puters were obtained randomly from a uniform distribution in the interval [840,3300]MIPS.
One grid with 75 hosts were simulated. The projected uncertainties given as input to the
IP-FULL-FUZZY-2 scheduler varied from 0 to 200% and the same range was employed to
simulate the fluctuations in resource availability during the execution of the application.
Fluctuations in both processing capacity of hosts and available bandwidth of the links were
simulated. The weights values of the grid graph were increased, corresponding to a decrease
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in resource availability.
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Figure 3: Simulated application.

Three metrics were evaluated: the makespan of the application, the number of migra-
tions and the computational demands. Each point of the graphs presented in the next
subsections is the average of 20 executions derived for the production of confidence interval
with 95% confidence level using the replication method. Each value in the horizontal axis
represents the increase of the weight values of the grid graph from a uniform distribution
in the interval [0,x].

Subsection 3.1 presents results for the makespan, Subsection 3.2 presents results for the
average number of migrations and Subsection 3.3 presents results for the computational
demands of the mechanisms.

3.1 Makespan

Figure 4 plots the makespan reached by the mechanisms. It is possible to see that there
is an increasing trend of the makespan with the increase of fluctuations. In general, the
proactive mechanism did not perform better than the hybrid and reactive mechanisms.
The exceptions happened with the fluctuation levels of 75%, 125% and 200% (but only
fluctuation level of 200% is showed in Figure 4), in which the proactive mechanism performed
better than the other mechanisms. Besides, the comparison between the proactive and the
non-proactive mechanisms shows that the effectiveness of the proactive mechanism depends
on the projected uncertainties given as input. This makes possible that the non-proactive
scheduler IPDT-2 gives makespans lower than the proactive mechanism when no migration
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occurs. This can be observed, for instance, for fluctuation levels of 50% and 100% in
Figure 4, in which the projected uncertainties of processing capacity and bandwidth were
50% and 100%, respectively.
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Figure 4: Makespans reached by the mechanisms when there were fluctuations in the pro-
cessing capacity and available bandwidth, for the grid with 75 hosts.

The hybrid and the reactive mechanisms showed, in general, similar makespan. By
comparing the schedules given by the hybrid1 and the hybrid2 mechanisms (both use the
IP-FULL-FUZZY-2 as initial scheduler) to those given by the proactive mechanism, it is
possible to see the importance of migrations and rescheduling. For instance, it can be
seen that for fluctuation levels of 50% and 100% (Figure 4), migrations triggered by these
mechanisms lowered the makespan. Results given by the hybrid1 and hybrid2 mechanisms
were quite similar. The exceptions happened when there was no fluctuation (where the
hybrid2 produced better result than did the hybrid1). In a similar way, results given by
the hybrid3 and the reactive mechanisms were quite similar, except when it does not occur
fluctuations.

3.2 Average number of migrations

Table 1 shows the average number of migrations produced by the mechanisms. The numbers
in bold represent the lowest average number of migrations for each fluctuation level. The
non-proactive and the proactive mechanisms are not presented in the table because they
do not realize task migration. In general, no trend can be observed in relation to the
number of migrations produced by mechanisms with the same initial scheduler or to the
number of migrations produced by the same scheduler. However, it can be observed that
the IP-FULL-FUZZY-2 produced a good initial schedule when the projected uncertainties
was 200% of both processing capacity and available bandwidth, leading to a low number of
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migrations. The average number is lowest when using the hybrid1 and hybrid2 mechanisms
for level of fluctuations of 200%, as can be seen in the Table 1. This suggests that a way
of dealing with the unstable behaviour of the IP-FULL-FUZZY-2 is by giving as input the
most suitable projected uncertainties.

Mechanisms 0% 50% 100% 125% 150% 175% 200%

Hybrid1 7.00 4.00 4.75 1.75 4.80 4.60 0.10

Hybrid2 1.00 4.30 3.45 4.40 4.85 5.45 0.00

Hybrid3 0.00 2.90 4.90 2.90 3.15 2.95 2.80

Reactive 1.00 1.85 4.35 4.70 4.85 4.05 5.00

Table 1: Average number of migrations produced by the mechanisms when there were
fluctuations in the processing capacity and available bandwidth, for the grid with 75 hosts.

3.3 Computational demand
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Figure 5: Computational demand of the mechanisms when there were projected uncertain-
ties to the processing capacity and available bandwidth, for the grid with 75 hosts.

Figure 5 plots the computational demand (the time spent to produce the initial schedule
and those at the rescheduling steps) of the mechanisms. It is possible to observe that the
mechanisms that do not produce migrations demands less time, as it would be expected,
since they run the scheduler just once. Among the mechanisms that produce migrations,
the reactive mechanism showed the most stable behaviour, with a tendency to increase the
demand as the level of fluctuation increases. The other mechanisms, that use the IP-FULL-
FUZZY-2 in one of their steps, has also showed a tendency to increase the demand as the
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level of fluctuations increases. However, the hybrid1 and hybrid2 mechanisms showed an
opposite trend up to fluctuation levels of 50%. This can be explained by observing the
performance of the proactive mechanism, since the higher the projected uncertainty given
as input to the IP-FULL-FUZZY-2, the lower is the computational demand.

Results given by the hybrid mechanisms were quite similar, except for fluctuation levels
of 200%. In this, the hybrid3 was the most demanding, followed by the hybrid1 and by
the hybrid2. This can be explained by the fact that, in general, the IP-FULL-FUZZY-2
needs higher values of Tmax to produce feasible solutions than do the IPDT-2. Therefore,
the complexity of the problems solved by the hybrid3 and by the hybrid1 were higher than
that demanded by the hybrid2. Besides, the difference between the hybrid1 and the hybrid3
can be explained by the fact that the initial schedule produced by the IP-FULL-FUZZY-2,
with projected uncertainties of 200%, had a shorter makespan than that produced by the
IPDT-2, which resulted in a lower number of rescheduling steps given by the hybrid1 than
that given by the hybrid3.

4 Conclusion

Mechanisms that adopt hybrid approaches for the scheduling of application tasks on grids
can benefit from the advantage of both reactive and proactive approaches. In this paper, it
was proposed three new hybrid mechanisms that differ by the scheduler used to produce the
initial schedule and to produce the schedules at rescheduling steps. In addition, two new
schedulers were proposed, one proactive and one non-proactive, used by the mechanisms.

Results presented in previous section showed that the efficiency of the IP-FULL-FUZZY-
2 can be strongly associated to the projected uncertainties given as input. It seems appro-
priate to consider 200% of projected uncertainties, since it led to the best performance when
this value was used. Results are consistent with those found in [6]. Therefore, it is a good
approach to use hybrid mechanisms that have the IP-FULL-FUZZY-2 as initial scheduler.
The use of hybrid2 can be a good choice if the time to produce schedules at the rescheduling
steps is important, since the IPDT-2 demands less time than does the IP-FULL-FUZZY-2
scheduler.

As future work, it is recommended the identification of the feasibility criterion of the
integer linear programming problem implemented by the IP-FULL-FUZZY-2, aiming to
avoid the need for re-computation of the schedules when the IP-FULL-FUZZY-2 gives
unfeasible solutions.
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