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Scheduling Grid Tasks under Uncertain Demands

Daniel M. Batista∗ André C. Drummond Nelson L. S. da Fonseca†

Abstract

The uncertainty of the demands of grid applications can cause unpredicted per-
formance and, consequently, can make ineffective schedules derived for target demand
values. To produce effective results, schedulers need to take into account the difficulty
in estimating the demands of applications. In this paper, a scheduler based on fuzzy
optimization is proposed to deal with such uncertainties. It is shown, via numerical
results, that the proposed scheduler presents advantages when compared to classical
schedulers.

1 Introduction

Grid Networks (Grids) have been designed to provide a distributed computational infras-
tructure for advanced science and engineering [1]. They involve coordinated resource sharing
and problem solving in heterogeneous dynamic environments to meet the needs of a genera-
tion of researchers requiring large amounts of bandwidth and more powerful computational
resources. Although in its infancy, cooperative problem solving via grids has become a re-
ality, and various areas from aircraft engineering to bioinformatics have benefited from this
novel technology. Grids are expected to evolve from pure research information processing
to e-commerce, as has happened with the World Wide Web.

Central to grid processing is the scheduling of application tasks to resources. Essentially,
scheduling is the decision making process of matching applications demands to grid resources
and the specification of the time at which resources should be used to satisfy these demands.
Grid resources comprise the hosts computational and storage capacity as well as network
bandwidth.

The lack of resource ownership by grid schedulers and fluctuations in resource availability
requires mechanisms which will enable grids to adjust themselves to cope with fluctuations.
A sudden increase in link load can, for example, increase the time for the transfer of data
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between the computers where two tasks reside, thus leading to the necessity of relocating the
tasks to a third computer. Furthermore, the lack of a central controller implies a need for
self-adaptation. Such autonomous operation of grids has been proposed and implemented
in different systems [2] [3] [4].

Although uncertainty of the demands of applications have been addressed in parallel
systems [5] [6] [7], the few existing techniques can only be partially utilized since these
systems are usually tightly coupled and the communication demands have little impact on
the performance of the applications. Conversely, the tasks of grid applications are connected
by shared communication links.

Computational demands can be inferred by executing the application with a controlled
number of parameters [8]. However, these techniques work only for applications which
computational demands increase linearly with the number of parameters used.

Furthermore, the scheduling problem is an NP-hard problem [9] and feasible solutions
in real time require either heuristics or approximations [10]. In addition, the computational
complexity is increased by the need to account for heterogeneous resources and irregular
topologies, which contrasts to what happens in multiprocessor systems.

This paper introduces a scheduler based on fuzzy optimization for dealing with uncer-
tainties of the demands of applications. The scheduler accepts as input a set of dependent
tasks described by Directed Acyclic Graphs (DAGs). Scheduling decisions account for un-
predicted amounts of data to be exchanged among tasks.

The makespan given by the fuzzy solution is compared to those produced by schedulers
based on classical optimization. Significant speedup values produced by schedulers designed
to operate under high levels of uncertainty were observed in the experiments conducted.
Moreover, the time taken by the fuzzy scheduler to produce feasible schedules is about the
same the one taken by its corresponding classical scheduler.

This paper is organized as follows. Section 2 introduces a novel scheduler based on fuzzy
optimization theory and Section 3 evaluates the effectiveness of the proposed scheduler.
Section 4 describes related works and Section 5 draws some conclusions.

2 A Scheduler for Dealing with Uncertainty of the Demands

of Applications

In [10], it was introduced a set of eight schedulers offering solutions which differ in terms
of their schedule length as well as computational complexity. These schedulers can be
executed in parallel to obtain a schedule with the highest possible quality within a time
period. One of these schedulers, called ILPDT, considers discrete intervals of time (∈ Z+)
and treats the scheduling problem as an integer linear programming problem. Although the
discretization of time introduces approximation and a consequent loss of precision, under
certain circumstances, this loss may not be significant, and the saving of time can be quite
attractive when compared to a corresponding scheduler which assumes time as a continuous
variable. A fuzzy version of this scheduler is presented in Subsection 2.2.
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2.1 The ILPDT scheduler

The ILPDT scheduler accepts two graphs as input. The graph G = (VG, EG) represents
the grid topology while the DAG D = (VD, AD) the dependencies among tasks. In G, VG

is the set of m (m = |VG|) hosts connected by the set of links EG. Hosts are labelled from
1 to m. In D, VD is the set of (n = |VD|) tasks with integer numbers as labels which allows
a topological ordering of tasks and AD is the set of dependencies.

The ILPDT scheduler considers that the input DAGs have a single input task and a
single output task. DAGs failing to satisfy this condition because they have more than
one input or output task can be easily modified by considering two null tasks with zero
processing time and communication weights. Some characteristics of the DAGs are: Ii:
processing demand of the ith task, expressed as number of instructions to be processed by
the ith task (Ii ∈ R+); Bi,j : number of bytes transmitted between the ith task and the jth

task (Bi,j ∈ R+); D: set of arcs {ij : i < j and there exists an arc from vertex i to vertex
j in the DAG}. Moreover, grid resources composed of hosts and links have the following
characteristics: TI k: time the kth host takes to execute 1 instruction (TI k ∈ R+); TBk,l:
time for transmitting 1 bit on the link connecting the kth host and the lth host (TBk,l ∈ R+);
δ(k): set of hosts linked to the kth host in the network, including the host k itself.

The weights of arcs (B) and nodes (I), representing respectively the amount of data to
be transferred and the amount of processing, are furnished by the user. ILPDT outputs a
Gantt diagram which provides information in which host each task should be executed, the
starting time of task and the time which data transfer should happen.

The ILPDT scheduler solves a linear integer program which seeks the value of variables
xi,t,k (∈ {0, 1}) and fi (∈ N

∗). xi,t,k is a binary variable that assumes a value of 1 if the ith

task finished at time t in the host k; otherwise this variable assumes a value of 0; fi is a
variable that stores the time at which the execution of the ith task is finished (fi ∈ N

∗).

The objective is to minimize the execution time of the application (Minimize(fn)). The
linear integer program is shown below. For convenience, the following notations is used:
T = {1, . . . , Tmax} (Tmax is the time that the application would take to execute serially
all the tasks in the fastest host, i.e., Tmax = min(TI )

∑n
i=1 Ii), J = {1, . . . , n} is the set

of existing tasks of an application and H = {1, . . . ,m} is the set of hosts. The ILPDT
formulation is given below:
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Minimize fn

such that

∑

t∈T

∑

k∈H

xj,t,k = 1 for j ∈ J ; (D1)

fj =
∑

t∈T

∑

k∈H

t xj,t,k for j ∈ J ; (D2)

xj,t,k = 0 for j∈J , k∈H, (D3)
t∈{1,...,⌈IjTIk⌉};

∑

k∈δ(l)

⌈t−IjTI l−Bi,jTBk,l⌉∑

s=1

xi,s,k ≥

t∑

s=1

xj,s,l for j∈J , ij∈D, (D4)

for l∈H, t∈T ;

∑

j∈J

⌈t+IjTIk−1⌉∑

s=t

xj,s,k ≤ 1 for k∈H, t∈T , (D5)

t≤⌈Tmax−IjTIk⌉;

∑

l∈H

VAj,l = 1 for j ∈ {2, ..., n}; (D6)

(|{i : ij ∈ D}|+ 1)VAj,l ≤
∑

t∈T

xj,t,l+

∑

i:ij∈D

∑

k∈δ(l)

∑

t∈T

xi,t,k for j ∈ {2, ..., n}, (D7)

l ∈ H;

|{i : ij ∈ D}|+VAj,l ≥
∑

t∈T

xj,t,l+

∑

i:ij∈D

∑

k∈δ(l)

∑

t∈T

xi,t,k for j ∈ {2, ..., n}, (D8)

l ∈ H;

VAj,l, xj,t,k ∈ {0, 1} for j ∈ J , l ∈ H, (D9)
t ∈ T .

Moreover, Tmin = minTI
∑

i∈SP Ii is the time that the application would take to execute
all the tasks of the shortest path in the fastest host (SP is the shortest path from task 1 to
task n in terms of number of instructions). Tmax and Tmin are quite useful to reduce the
number of variables needed in the fuzzy formulation.
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2.2 The ILP-FUZZY scheduler

The uncertainties of the demands of the applications are represented by fuzzy numbers
in the proposed formulation. The values of I and B are represented by triangular fuzzy
numbers. In this way, the ith task requires Ii instructions with an uncertainty of σ% of
this value; the amount of instructions is represented by [Ii, Ii, Ii] where Ii = Ii(1−

σ
100) and

Ii = Ii(1+
σ
100). In a similar way, the communications demands are given by [Bi,j , Bi,j , Bi,j ]

with a ρ% level of uncertainty.
The objective function of ILPDT is modified so that the satisfaction degree λ (∈ [0, 1]) is

maximized. The satisfaction degree is inversely proportional to the execution time given by
a schedule. The values of Tmax and Tmin cannot be computed as in the ILPDT algorithm,
given the uncertainty in the DAGs weights, therefore, T ′

max = Tmax(1 + σ
100) and T ′

min =
Tmin(1 − σ

100) are used instead. Figure 1 illustrates the relationship between λ and the
application execution time (fn). Moreover, the following constraint should be added to the
formulation in order to include the range of values of fn (∈ [T ′

min, T
′
max]) and the relationship

with the λ value:

1−
fn − T ′

min

T ′
max − T ′

min

≥ λ (1)

0

1

0 T ′
min T ′

max

λ

fn

Figure 1: Satisfaction Degree.

Since Ii and Bi are now fuzzy numbers, the constraints of ILPDT need to be changed
accordingly. The constraint D3 is:

xj,t,k = 0 for j∈J , k∈H, (2)
t∈{1,...,⌈IjTI k⌉}

These constraints determine that a task (j) cannot terminate until all its instructions
have been completely executed. Since it is not possible to know the exact number of
instructions, Ij is replaced by Ij given that the minimum number of instructions is the only
value that is certainly known.

The constraints D4 are modified to the following formulation:
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∑

k∈δ(l)

⌈t−IjTI l−Bi,jTBk,l⌉∑

s=1

xi,s,k ≥

t∑

s=1

xj,s,l for j∈J , ij∈D, (3)

for l∈H, t∈T

The constraints in (3) establish that the jth task cannot start execution before all its
predecessors have finished their execution and transferred the required data by the jth task.
In this way, in order to prevent the potential execution of the jth task previous to the
execution of its predecessors due to the existing uncertainty on I and B values, Ij and Bij

are respectively replaced by their maximum values given by Ij and Bi,j .
The last set of modified constraints is D5, given by:

∑

j∈J

⌈t+IjTI k−1⌉∑

s=t

xj,s,k ≤ 1 for k∈H, t∈T , (4)

t≤⌈T ′
max−IjTI k⌉

The constraints in (4) establish that there is at most one task in execution at any one
host at a specific time. Since the only know value of the number of instructions is the lowest
value, the computational uncertainty yields to the replacement of Ij by Ij .

These set of modifications leads to a new fuzzy scheduler called ILP-FUZZY.

3 Effectiveness of the ILP-FUZZY scheduler

To assess the effectiveness of the fuzzy approach, the schedule produced by the ILP-FUZZY
scheduler was compared to the one produced by the ILPDT scheduler. In the evaluation
both schedulers received the same DAGs as input. The degree of uncertainty of the DAGs
weights is provided as input to the ILP-FUZZY scheduler. The Montage astronomy [11]
application was used to generate the input DAG shown in Figure 2. Weights were randomly
chosen from a uniform distribution [11].

Thirty grids were generated for the evaluation of the ILP-FUZZY scheduler by using
the Doar-Leslie method which is largely used to generate Internet topologies. The number
of hosts used is 50, the degree of node connectivity (β) is 0.98 and the ratio between the
longest and the shortest links is 0.98.

Uncertainty values of 40%, 100%, 200% and 400% were considered. The maximum
value of 400% was chosen following the recommendation in [11]. Although, uncertainty was
place on both computational and communication demands, due to space limitation, results
considering uncertainties only on B values (σ = 0% and ρ ∈ {40%, 100%, 200%, 400%}) are
shown in this paper since communication demand is the most critical one given that data
can be generated in real time.

For each scheduler designed to operate under a specific uncertainty level, DAGs with
diverse uncertainty levels were used as input. Twenty DAGs with randomly generated
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T 2 4
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T 2 5

T 1 3T 1 6 T 1 4 T 1 7 T 1 8

T 1 9

T 2 0

Figure 2: Tasks DAG used in the experiments.

weights were used for each level of uncertainty. In this way, it is possible to evaluate how
well a scheduler designed to operate under a specific uncertainty level handles a whole range
of uncertainty of the demands of the applications.

To compare the performance of different schedulers, the speedup was employed. The
makespan produced by a scheduler and the Tmax of the original DAG (with no uncertainty,
σ = 0 and ρ = 0) were used in the computation of the speedup.

The schedulers were written in the C programming language and the optimization library
Xpress version 2006A.1 was used. Programs were executed in a machine with Debian
GNU/Linux version Lenny operating system.

Figure 3 displays the speedup of the ILP-FUZZY schedulers designed with different un-
certainty levels as a function of the uncertainty of the input DAGs. The ILPDT produces
higher speedup values than those produced by the ILP-FUZZY schedulers designed to op-
erate under uncertainty levels equal or lower than 100%. ILPDT also performs better for
low levels of uncertainty in the input DAG than the ILP-FUZZY scheduler designed for a
200% level of uncertainty. However, when the ILP-FUZZY scheduler is designed for a high
degree of uncertainty (400%), it produces higher speedup values than those produced by
the ILPDT scheduler. For instance, the speedup produced by ILP-FUZZY for ρ = 400%
can be 26% higher than the ILPDT speedup. Moreover, the ILPDT speedup drops much
faster than those given by the ILP-FUZZY scheduler as a function of the uncertainty of the
DAGs weights.

Results point out that the fuzzy approach is attractive if schedulers are designed to
handle a high level of uncertainty. This can be understood by the lack of precision introduced
by fuzzy solutions when their flexibility is quite limited. However, when the flexibility
increases, the enhanced ability to handle uncertainty of demands overcompensates potential
mistakes made when the range of variation of solutions is limited. Furthermore, the speedup
produced by schedulers designed for a high level of uncertainty is quite robust to variations
of uncertainties of demands.

Comparing the execution time of both schedulers, it follows that the 90th percentile
of the execution time of the ILP-FUZZY scheduler is 32% lower than that of the ILPDT



8 Batista, Drummond and Fonseca

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  40  100  200  400

A
ve

ra
ge

 S
pe

ed
up

DAG level of uncertainty (%)

ILPDT
ILP−FUZZY ρ=400%
ILP−FUZZY ρ=200%
ILP−FUZZY ρ=100%
ILP−FUZZY ρ=40% 

Figure 3: Speedup produced by schedulers for uncertain communication demands.

scheduler. However, the execution time of the ILP-FUZZY scheduler for two (out of 30
grids used in the evaluation) were ten times longer than that of the ILPDT scheduler. Al-
though the use of the fuzzy scheduler is attractive not only for the speedup gain but also for
time taken to derive a schedule, one needs to be aware that long execution times can occur.

4 Related work

Previous works investigated the issue of uncertainty of demands, specially in parallel sys-
tems. In [12], a proposal oriented to cluster and I/O bound applications was developed.
The proposal gathers applications into classes according to their demands. Applications
are monitored during their execution and change of class is pursued in case of changes
of the demands of an application. Although this works considers communication costs, it
is a reactive scheme while our proposal is a preventive one. Moreover, experiments were
conducted in a homogeneous environment with a low number of hosts.

The research reported in [13] collects metrics of performance of parallel applications
in supercomputers. Probability distributions for performance metrics such as execution
time and host utilization are used to generate synthetic load to predict performance. This
research differs from our work by the fact that the execution of applications are terminated
in case they exceed a predicted value. Moreover, only independent tasks are considered.

In [14], a module that takes into account the available capacity of a grid is introduced.
The module was based on the middleware “Support Infrastructure to Mobile Applications”
(ISAM). Measurements are collected and used by bayesian models to predict the perfor-
mance of real applications. Uncertainties are introduced in performance predictions. How-
ever, uncertainties of the demands of applications are not considered, specially those related
to the transfer of data among tasks. The NWS (Network Weather Service) was employed
in experiments with homogeneous hosts to predict the computational demands of the ap-
plications.

Two different approaches were compared in [11]. One that consider only computational
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demands and the other which also includes communication demands. These approaches
schedule DAGs of dependent tasks without full knowledge of them. Uncertainty of DAGs
weights is taken into account. It was shown that the makespan of applications increases
with the degree of uncertainty. However, no scheduler that accounts the uncertainty of the
demands of applications was proposed. Our work uses the same real scenario of the work
in [11].

The research described in [15] compares the predicted execution time with the measured
one. Experiments using a cluster of the “Enabling Grids for E-sciencE” (EGEE) grid were
conducted. However, only CPU intensive applications in a specific cluster were considered
and not much can be inferred about other scenarios.

Our work differs from others in the literature by considering both computation and
communications uncertainties of grid applications with dependent tasks in heterogeneous
grids.

5 Conclusion and future work

The computation and communication demands of grid applications are usually informed
by grid users who can only make a rough estimation of these demands. The uncertainty
of these demands can cause unpredicted performance and can make ineffective schedules
derived with different target demand values. Therefore, it is of paramount importance
to take into account uncertainties when scheduling tasks. Schedules produced should be
flexible enough to cope with uncertainties and yet produce suboptimal, if not optimal,
solutions.

In this paper a scheduler based on fuzzy optimization was proposed to schedule grid tasks
under uncertain knowledge about their demands. Results indicate that the effectiveness of
this approach relies on the ability to cope with a high level of uncertainty.

As several grid applications, specially those of e-Science, generate huge amount of data
during its execution, the approach proposed in this paper seems to be quite attractive for
future implementation in grid systems. Currently we are investigating the trade-off between
the solutions given by fuzzy schedulers and those given by self-adapting schemes.
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