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A Set of Schedulers for Grid Networks

Daniel M. Batista∗ Nelson L. S. da Fonseca† Flavio K. Miyazawa

Abstract

Central to grid processing is the scheduling of application tasks to resources. Sched-
ulers need to consider heterogeneous computational and communication resources, pro-
ducing the shortest possible schedule under time constraints dictated by both the ap-
plication needs and the frequency of fluctuation of resource availability. This paper
introduces a set of schedulers with such characteristics.

1 Introduction

Grid Networks (Grids) involve coordinated resource sharing and problem solving in het-
erogeneous dynamic environments [1] [2]. Central to grid processing is the allocation of
tasks to resources (task scheduling). In heterogeneous systems, the scheduling problem is
a NP-complete problem [3]. Feasible solutions in real time to this problem require either
heuristics or approximations [3] [4] [5]. Usually, such solutions need to be found previous
to a given deadline which depends on the characteristics of the application and of the grid
considered [6] [7]. One approach to obtain the best possible schedule within a time frame
is to consider the schedules produced by different schedulers. These schedulers would have
different computational complexity and would produce schedules with diverse quality. In
general, the quality of a schedule depends on the time demanded to produce it. The sched-
ulers could run in parallel and the desired schedule chosen among those fully produced
within a given time period.

This paper introduces a set of eight schedulers offering solutions which differ in terms
of their schedule length as well as computational complexity. These schedulers can be
executed in parallel to obtain a schedule with the highest possible quality within a time
period. One of the main characteristics of these schedulers is the consideration of network
resource availability which is not widely considered in the literature [8] [9]. Moreover, the
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2 Batista, Fonseca and Miyazawa

performance of the proposed schedulers are evaluated considering various network topologies
and applications composed by dependent tasks.

Although various scheduling schemes have been proposed for grids [10] [11] [12] [13]
[14], most of them do not take into account heterogeneous resources, with the exception
of [13] which focus on tasks with cyclical data dependencies. Some authors [12] propose
schedulers to work under time constraints but no comparison with schedulers that take
data dependencies into account has been carried out. The schedulers presented in this
paper differ from the existing ones by both considering heterogeneous environments and
working under time constraints.

This paper is organized as following. Section 2 introduces a set of novel schedulers.
Experiments are shown in Section 3 and Section 4 provides some conclusions.

2 Proposed Set of Schedulers

Schedulers attempt to achieve scheduling objectives taking into consideration a description
of the application and of the available grid resources. Applications are described by tasks
and their dependencies are represented by directed acyclic graphs (DAGs). Tasks in these
DAGs are represented by vertices and arcs represent dependencies between tasks. Vertex
weights indicate the number of instructions that need to be executed by a task whereas arc
weights the amount of bits to be transferred between two tasks. Grid resources are also
represented by graphs. In these graphs, vertices represent hosts and their weights the time
taken to execute 1 instruction, whereas edges represent full-duplex links and their weights
indicate the time needed to transfer 1 bit.

The aim of all the schedulers proposed is the minimization of schedule length for grid
applications under the following restrictions: i) the execution of a task should begin only
after the completion of all the other tasks which the task depends on, as well as only after
the reception of all data sent by these tasks. ii) each task can be mapped to only one host.
iii) two dependent tasks can only be mapped to hosts which have a connecting link (each
host is assumed to have a virtual link to itself with zero cost associated with that link). iv)
each host can execute only a single task at anyone time.

The schedules produced by six of the eight schedulers proposed are derived from the
solution of mixed/integer linear programming (LP) problems. Three of these schedulers
consider time to be a continuous variable (∈ R+) whereas the other three treat it as a
discrete variable (∈ Z+). The choice involves a certain trade-off between execution time
and the schedule length. Although the discretization of time introduces approximation and
a consequent loss of precision, under certain circumstances, this loss may not be significant,
and the saving of time can be quite attractive. The exact solution for a mixed/integer
programming problem for both continuous and discrete time are derived and the other four
schedulers are derived by employing two different relaxation techniques to the exact LP
problems.

The schedulers which consider time as a continuous variable are formulated as a mixed
linear programming problem (Subsection 2.1), whereas those that consider time as a discrete
variable are formulated as integer linear programming problem (Subsection 2.2). In these
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problems, variables Xi,k define the mapping of tasks to hosts; Xi,k is 1 if the ith task is
mapped to kth host; otherwise, it is 0.

Although solving exact linear programming problems with integrality constraints leads
to optimal or quasi-optimal solutions, it may take a very long time. An alternative is
the obtainment of partial fractional solutions by considering relaxation of integrality con-
straints, with the option of conversion of these solutions to integer ones. In this case, the
variables (Xi,k) are defined in the interval [0, 1]. Techniques for the relaxation of integral-
ity constraints adopt randomized rounding techniques, in which the value of the variable
Xi,k is the probability of the ith task being mapped to the kth host. Two different ran-
domized rounding techniques were adopted to define two different algorithms. The first
technique (Algorithm 1) solves a linear programming problem once, with the value of the
variables used as probabilities for a series of drawings, each defining a different schedule;
the one yielding the shortest schedule is selected as the solution. In the second technique
(Algorithm 2), an iterative randomized rounding procedure is adopted. In each step of this
procedure, an LP is solved, and the task with the highest probability values is definitely
mapped to a host. The procedure terminates when no more tasks are left to be mapped to
a host.

The other two schedulers are based on random drawing. The schedule is the one of those
produced during a series of drawings that minimizes the schedule length. The first step of
each iteration of these algorithms is the assignment of an initial value to the variables Xi,k.
The actual starting values constitute the only difference between the two algorithms. In one,
it is based on a probability that is uniformly distributed among the hosts (Subsection 2.3),
whereas in the other, it somehow translates the characteristics of tasks and hosts, and
will be denominated “grid aware” (Subsection 2.4). In both algorithms, the dependency
constraints shown in the DAG, the network topology and the resource capacity are observed.
Moreover, these algorithms produce different schedule lengths itself as well as for their own
execution time. The one using ”grid aware” initial values tends to run for longer periods,
but produces shorter schedule length.

Hosts are labelled from 1 to m, while tasks are identified by labels from 1 to n. Tasks
are processed according to the topological order of the input DAG, each with a single input
task and a single output one. DAGs failing to satisfy this condition because they have more
than one input or output task can be easily modified by considering two null tasks with zero
processing time and communication weight [10]. Some characteristics of the DAGs are: i)
n: number of tasks (n ∈ N); ii) Ii: processing demand of the ith task, expressed as number
of instructions to be processed by the task i (Ii ∈ R+); iii) Bi,j : number of bits transmitted
between the ith task and the jth task (Bi,j ∈ R+); iv) D: set of arcs {ij : i < j and there
exists an arc from vertex i to vertex j in the DAG}. v) s0: starting time of the input task.
For all examples in this paper, s0 = 0.

Moreover, grid resources composed of hosts and links have the following characteristics:
i) m: number of existing hosts (m ∈ N); ii) TI k: time the kth host takes to execute
instructions (TI k ∈ R+); iii) TBk,l: time for transmitting a bit on the link connecting the
kth host and the lth host (TBk,l ∈ R+); iv) N : set {kl : host k is linked to host l}; v) δ(k):
set of hosts linked to the kth host in the network.

Moreover, Tmax is the time that the application would take to execute serially all the
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tasks in the fastest host, i.e., Tmax = minTI
∑n

i=1
Ii, where minTI is the lowest value of

TI . J = {1, . . . , n} is the set of existing tasks of an application and H = {1, . . . ,m} is the
set of hosts.

2.1 LP Formulation with time as a continuous variable

This approach adopts a mixed linear programming formulation for the grid scheduling
problem:

Minimize (In

m∑

k=1

TIkXn,k) + sn

such that

si ≥ s0 for i ∈ J ; (C1)

sj ≥ si +
∑

k∈H

[(IiTIkXi,k)+

∑

l∈δ(k)

(Bi,jTBk,lVAi,k,j,l)] for i, j ∈ J , (C2)

ij ∈ D;

sj ≥ si +
∑

k∈H

(IiTIkVAi,k,j,k)−

y(1 − Pi,j) for i, j ∈ J , (C3)
i 6= j, ij /∈ D,
ji /∈ D;

si ≥ sj +
∑

k∈H

(IjTIkVAj,k,i,k)−

yPi,j for i, j ∈ J , (C4)
i 6= j, ij /∈ D,
ji /∈ D;

∑

k∈H

Xi,k = 1 for i ∈ J ; (C5)

∑

k∈H

∑

l∈δ(k)

VAi,k,j,l = 1 for j ∈ J ; (C6)

2VAi,k,j,l ≤ Xi,k + Xj,l for ij ∈ D, (C7)
kl ∈ N ;

VAi,k,j,l − Xi,k − Xj,l ≥ −1 for ij ∈ D, (C8)
kl ∈ N ;

2VAi,k,j,k ≤ Xi,k + Xj,k for i, j ∈ J , i 6= j, (C9)
ij /∈ D, ji /∈ D;

VAi,k,j,k − Xi,k − Xj,k ≥ −1 for i, j ∈ J , i 6= j, (C10)
ij /∈ D, ji /∈ D;

VAi,k,j,l, Xi,k, Pi,j ∈ {0, 1} for i, j ∈ J , k, l ∈ H. (C11)

The relaxation of the above problem consists of replacing {0, 1} in the constraints (C11)
by the interval [0, 1].

The constraints in (C1) state that all tasks must start after time s0. The constraints in
(C2) specify that a task will start only after all tasks dependent on it have been completed
and the relevant data transferred. Constraints (C3) and (C4) state that if two independent
tasks are scheduled to the same host, one of them will be fully executed before the start
of the other. The binary variable Pi,j has value 1 if the ith task is executed first (in which
case constraint (C4) is satisfied) and 0 if the jth task is executed first (constraint (C3) is
satisfied). The constant y is a large positive number (e.g., Tmax). Constraint (C5) states
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that the tasks must be scheduled to some host (k). Constraint (C6) specifies that there
should be a single tuple (i, k, j, l) such that the ith and jth tasks are scheduled to the kth

and to the lth hosts, respectively.

Constraints (C7), (C8), (C9) and (C10) determine that VAi,k,j,l is 1 if and only if
Xi,k + Xj,l is 2. The value of these two variables indicates that tasks with a dependency
relationship should be mapped to interconnected hosts.

The final scheduling is established by the value of the following variables: i) Xi,k, which
has the value 1 if the ith task is mapped to the kth host; otherwise it is 0 (Xi,k ∈ {0, 1}); ii)
si, which sets the starting time of the ith task (si ∈ R+).

This formulation must account for a maximum of (m2 + 2m + 3)n2 − (m2 + 2m + 1)n
constraints, and (m2 + 1)n2 + (m + 1)n variables. The scheduler based on the exact solu-
tion of this problem involving mixed linear programming with a continuous time variable is
denominated MLPCT. There are two versions of MLPCT, one involving the relaxation tech-
nique based on randomized rounding (CT-RR) and the other using the relaxation technique
based on iterative randomized rounding (CT-IRR).

2.2 LP formulation with time as a discrete variable

This formulation considers discrete intervals of time and treats the scheduling problem as
an integer linear programming problem, and is formulated as follows:

Minimize fn

such that

∑

t∈T

∑

k∈H

xj,t,k = 1 for j ∈ J ; (D1)

fj =
∑

t∈T

∑

k∈H

t xj,t,k for j ∈ J ; (D2)

xj,t,k = 0 for j∈J , k∈H, (D3)
t∈{1,...,⌈IjTIk⌉};

∑

k∈δ(l)

⌈t−IjTI l−Bi,jTBk,l⌉∑

s=1

xi,s,k ≥

t∑

s=1

xj,s,l for j∈J , ij∈D, (D4)

for l∈H, t∈T ;

∑

j∈J

⌈t+IjTIk−1⌉∑

s=t

xj,s,k ≤ 1 for k∈H, t∈T , (D5)

t≤⌈Tmax−IjTIk⌉;
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∑

l∈H

VAj,l = 1 for j ∈ {2, ..., n}; (D6)

(|{i : ij ∈ D}| + 1)VAj,l ≤
∑

t∈T

xj,t,l+

∑

i:ij∈D

∑

k∈δ(l)

∑

t∈T

xi,t,k for j ∈ {2, ..., n}, (D7)

l ∈ H;

|{i : ij ∈ D}| + VAj,l ≥
∑

t∈T

xj,t,l+

∑

i:ij∈D

∑

k∈δ(l)

∑

t∈T

xi,t,k for j ∈ {2, ..., n}, (D8)

l ∈ H;

VAj,l, xj,t,k ∈ {0, 1} for j ∈ J , l ∈ H, (D9)
t ∈ T .

where Tmax is the longest possible finish time for a task. For convenience, the following
notations is used: T = {1, . . . , Tmax} and Xi,k is defined as

∑Tmax
t=1

xi,k,t.
The schedule is established by the value of the following variables: i) xi,t,k: binary

variable that assumes a value of 1 if the ith task finished at time t in the host k; otherwise
this variable assumes a value of 0; ii) fi: variable that stores the time at which the execution
of the ith task is finished (fi ∈ N

∗).
The relaxation of the discrete time formulation consists of changing the set {0, 1} of the

constraints in (D9) to the interval [0, 1].
The constraints in (D1) specify that a task must be executed at one time in a single host.

The constraints in (D2) establish the finishing time for all the tasks, and the constraints in
(D3) determine that a task (j) cannot terminate until it has been executed in the host k.
The constraints in (D4) establish that if the ith task executes in the lth host before the jth

task does, and that the jth task is finished at time t, then the time when the ith task finished
its execution is at most t minus the execution time of the jth task minus the time needed
to transfer data between these two tasks. The constraints in (D5) establish that there is at
most one task in execution at any one host at a specific time, while the constraints in (D6)
guarantee that a task be scheduled to a single host at any one time, while the constraints
in (D7) and (D8) determine that dependent tasks are mapped to hosts interconnected.

The accuracy of the results obtained by using this formulation depends on the interval
width used in the discretization of the timeline. The wider the interval is, the faster the
execution; but, the lower the accuracy.

This formulation involves a maximum of (n2 + n + 1)mTmax + (2n − 2)m + 3n − 1
constraints and (mTmax + 1)n + mn variables. The scheduler based on an exact solution
of the integer linear programming with a discrete time variable is denominated as ILPDT.
Again, two versions of schedulers with relaxation are presented, one involving the relaxation
technique with randomized rounding (DT-RR) and the other using the relaxation technique
with iterative randomized rounding (DT-IRR).

2.3 Random Draw with uniform probabilities

The seventh scheduler is based on a algorithm involving random probabilities of task
scheduling to hosts. It uses an uniform probability distribution to map tasks to hosts.
All the tasks have probability 1/m to be executed in each host.
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This scheduler chooses as solution the shortest schedule among P random selections.
At each step of a selection, the scheduler maps a task to a host and changes the assign-
ment probability of those tasks not mapped yet, considering the dependency relationships
established in the task DAG, the network topology and resources capacity. This scheduler
is denoted as RDU.

2.4 Drawing Using Distribution involving Grid-aware Probability values

This scheduler differs from the one in the previous subsection by the probability values used
for the mapping of tasks to hosts. The following rules are considered to derive the probability
values: i) the probability that a task will be executed in a given host is proportional to the
processing rate of all available hosts; ii) the probability of execution of a task by a given
host is proportional to the number of links connecting it to other hosts, as well as to their
available bandwidth; iii) the lower the level of a task in a DAG, the higher the probability
that the task will be mapped to a host with a high available processing rate; iv) the larger
the number of arcs in a DAG, the higher the probability that a given task will be mapped
to a host with large number of links connecting it to other hosts; v) the greater the amount
of data a task needs to transfer, the higher the probability that the task will be mapped to
a host with high capacity links; vi) the larger the number of instructions involved in a task,
the higher the probability that the task will be mapped to a host with a large available
processing rate.

The first two rules define the initial probability of mapping the ith task to the kth host,
given by:

Xi,k = (

1
TIk∑

m
j=0

1
TIj

×
1

3
) + (

|δ(k)| − 1
∑

m
j=1 |δ(j)| − m

×
1

3
)

+ (

∑
l∈δ(k)−{k}

1
TBk,l∑

m
j=1

∑
l∈δ(j)−{j}

1
TBj,l

×
1

3
) (1)

If the criteria used were limited to grid resources, hosts with greater availability of
processing rates and bandwidths would be utilized all the time, whereas hosts with less
capacity would be idle. To avoid such an unbalance which leads to unsatisfactory results,
the characteristics of tasks also need to be considered, as done in list-based schedulers [10].
Consequently, the probability value in Equation 1 is redefined to each task considering the
last four rules defined above. This scheduler is denoted DG and it also chooses the shortest
schedule among P random selections.

3 Comparison of Scheduler Efficiency

Various network topologies and tasks DAGs were used to compare schedulers proposed here.
Results of the experiments involving the DAG shown in Figure 1 are representative of those
obtained in other experiments and will be presented in this section. The criteria used for
comparison are the speedup (the ratio between the time to a serial execution of the tasks
in the processor with the greatest available processing rate and the time for task execution
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using a specific schedule) and the execution time required to produce that schedule. A
workstation equipped with a Pentium 4, 3.2 GHz CPU with 2GB RAM was used in the
experiments. The software xpress was employed to solve the linear programming problems.

T00 [53]

T10 [50]

[5]

T11 [49]

[4]

T12 [47]

[5]

T13 [48]

[4]

T20 [45]

[4] [5] [4] [5]

Figure 1: Tasks DAG used in the experiments.

Various topologies were generated using the Doar-Leslie method [15] by changing the
number of hosts, the network connectivity (node degree) and the ratio between the longest
and the shortest edge. If not stated otherwise, the network used has 50 nodes (N), network
degree (β) 0.5 and ratio between longest and shortest edge (α) 0.9. The processing rate
of the hosts follows a uniform probability distribution function in the interval (0.4, 2]. The
capacity of the network links varied in the interval (0, 5], according to the Doar-Leslie
method. The weights of the DAG in Figure 1 were in the interval [4, 5], whereas the weight
of the vertices varied in the interval [45, 53]. Furthermore, the number of random selections
(P) is 10,000.

Table 1 and Table 2 present the performance of the proposed schedulers as a function of
the number of hosts. The performance of MLPCT is not shown since it requires much longer
execution times when compared to the other schedulers. For a 40 host network, for example,
MLPCT took over one hour to generate a schedule, whereas ILPDT took 12.3 seconds. The
schedule producing the largest speedup for each number of hosts is written in bold. The
ratio between other speedup values and the largest one (100%∗ (speedup/largest speedup))
is shown as percentage in the table. ILPDT produced the largest speedup for most of the
experiments, followed by CT-RR. Schedulers based on the relaxation in Algorithm 2 (CT-
IRR and DT-IRR) produced the smallest speedup among the schedulers based on linear
programming. This poor performance can be explained by the single random selection of
the mapping probabilities in Algorithm 2. For schedulers based on random drawing DG
provides better schedules than does RDU since the initial probability values of the former
consider both grid and task constraints.

The execution time of schedulers based on linear programming, also portrayed in Table 2,
increases as the number of hosts increases with the largest speedups achieved by schedulers
which took longer to generate the schedule. Clearly, this does not happens with schedulers
based on random drawing. The use of algorithms based on integrality relaxation led to
lower execution times than did their exact counterparts. For a 190-host network, ILPDT
took 134.03 seconds while DT-IRR took 32.05 seconds. Moreover, the execution time of
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N
Speedup

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
10 77.72% 77.72% 99.31% 77.55% 98.51% 99.07% 1.29

40 89.21% 73.36% 99.86% 73.26% 1.36 81.79% 85.10%
70 1.56 64.34% 91.51% 82.48% 99.38% 77.25% 84.52%
100 1.53 65.55% 97.73% 65.17% 94.18% 70.73% 79.10%
130 94.38% 66.71% 91.73% 66.23% 1.51 69.67% 75.53%
160 93.43% 62.23% 91.33% 62.11% 1.61 68.26% 73.84%
190 62.49% 62.49% 81.82% 62.27% 1.61 65.29% 74.71%

Table 1: Speedup of various schedules as a function of the number of hosts

N
Execution time (seconds)

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
10 0.28 0.05 0.52 0.21 0.17 0.08 0.07

40 3.64 0.64 1.63 2.00 12.30 0.60 0.48
70 16.87 2.47 5.14 5.19 4.38 1.80 1.38
100 78.02 7.32 10.02 9.55 17.80 3.40 2.56
130 71.12 19.92 17.29 23.96 81.31 5.86 4.49
160 119.98 55.83 26.16 33.18 24.85 8.56 6.54
190 345.77 82.04 25.64 32.05 134.03 11.89 8.98

Table 2: Execution time of various schedules as a function of the number of hosts

schedulers based on integrality relaxation does not increase as fast as the exact ones do.
Discretization of time plays a key role in decreasing the execution time as can be seen in
the comparison of the time demanded by CT-RR with that required by its discrete time
counterpart.

Table 3 and Table 4 show the speedup and execution time of the proposed schedules
as a function of network connectivity. This connectivity is expressed as a number in the
interval [0, 1], a fully-connected network having connectivity of 1.0. As in the experiments
reported in Table 1 and Table 2, ILPDT and DT-IRR generally produce the best schedules.
DG did generated two of the largest speedups. Again, the schedulers based on Algorithm
2 (CT-IRR and DT-IRR) provided the smallest speedup. When the connectivity increases,
the execution time typically decreases more than it does when the number of hosts increases.
The largest speed up is no longer associated with the longest execution time, as happened
when the number of hosts was varied.

The ratio between the longest and the shortest edge was varied but no significant result
different than the ones previously reported was found.

From the results found in those experiments, the scheduler which generated the largest
speed up was the ILPDT but at the cost of execution time. Thus, ILPDT is appropriate
to scenarios with loose requirements of running time. Moreover, schedulers based on Algo-
rithm 1 are more appropriate to applications which can tolerate more easily a non-optimal
scheduling. These schedulers produced results which were close to those given by ILPDT
but the execution time required, especially for DT-RR was much less than that for ILPDT,
and this savings justify eventual small losses in speedup. Whenever time requirements are
too limited to wait for a schedule derived via linear programming the DG scheduler can
also be used, since it produces reasonable speedup values under certain circumstances.
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β
Speedup

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
0.1 71.06% 71.06% 84.72% 81.08% 83.81% 96.38% 1.41

0.22 72.97% 72.97% 96.23% 72.55% 96.46% 89.29% 1.38

0.34 70.09% 69.64% 91.51% 69.64% 1.44 97.30% 98.64%
0.46 98.17% 66.10% 1.52 65.90% 97.64% 81.37% 92.93%
0.58 89.92% 66.10% 1.52 69.92% 99.64% 89.51% 92.97%
0.7 98.82% 65.32% 98.82% 65.31% 1.53 77.78% 90.87%
0.82 91.71% 66.10% 1.52 77.74% 65.61% 73.64% 87.03%

Table 3: Speedup of various schedules as a function of network connectivity

β
Execution time (seconds)

CT-RR CT-IRR DT-RR DT-IRR ILPDT RDU DG
0.1 0.82 0.56 1.69 0.86 18.84 1.38 1.10

0.22 5.97 0.71 1.66 1.33 12.21 1.38 1.09

0.34 4.56 1.24 2.33 1.41 32.28 1.26 0.99
0.46 4.01 1.24 3.53 3.08 7.49 1.08 0.81
0.58 4.85 0.93 2.35 1.77 2.22 0.96 0.73
0.7 7.30 1.73 3.04 3.69 3.46 0.38 0.30
0.82 9.98 1.24 2.60 3.05 4.29 0.10 0.09

Table 4: Execution time of various schedules as a function of network connectivity

4 Conclusions

Grid networks can accommodate a new generation of users with high computational and
data transfer demands. Although several grid systems already exist, this technology is still
in its infancy. One of the major challenges of grids networks is the task scheduling, which
should consider the heterogeneity of resources as well as make decisions during periods of
time which duration as dictated by the application needs. This paper has introduced a set
of grid schedulers able to deal with heterogeneous grid resources and with temporal restric-
tions. The effectiveness of this set of schedulers has been illustrated in several simulation
experiments involving various network topologies.

As future work, we plan to integrate these schedulers in grid environment under devel-
opment by the authors.
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