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Self-Adjusting Grid Networks

Daniel M. Batista∗ Nelson L. S. da Fonseca† Fabrizio Granelli

Dzmitry Kliazovich

Abstract

This paper introduces a procedure called Traffic Engineering for grids for enabling
grid networks to self-adjust to resource availability. The proposal is based on monitoring
the state of resources and on task migration. It involves several layers of the Internet
architecture. Experiments executed in NS-2 are used to illustrate the efficacy of the
procedure proposed.

1 Introduction

Grid Networks (Grids) were designed to provide a distributed computational infrastructure
for advanced science and engineering [1] [2]. They involve coordinated resource sharing and
problem solving in heterogeneous dynamic environments to meet the needs of a generation of
research workers requiring large amounts of bandwidth and more powerful computational
resources. Although in its infancy, cooperative problem solving via grids has become a
reality, and various areas from aircraft engineering to bioinformatics have benefited from this
novel technology. Grids are expected to evolve from pure research information processing
to e-commerce, as has happened with the World Wide Web.

Resource sharing was one of the main objectives of Arpanet, the ancestor of Internet,
developed in the 60’s with network links used to access remote resources. In grids, however,
network links are considered to be resources for allocation by grid applications. The network
is seen as the bus of a virtual computing system used for the exchange of massive amount of
data, potentially in the order of petabytes. Indeed, it has been observed that the exponential
growth in the size of the data sets of current grid applications is rapidly approaching this.
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In [3], a layered architecture for grid networks was proposed. Figure 1 illustrates the
mapping of this architecture to the layers of that of the Internet. The Resource layer serves
as an intermediary between the application and the infrastructure of the grid. One of its
main functionalities is the evaluation of application requirements as well as the gathering
of information about the status of shared resources. The Collective layer is responsible for
the selection of resources to meet the application requirements, as well as the allocation of
these resources. The combination of these two layers corresponds to the Application layer
in Internet architecture. The Connectivity layer, which houses protocols for communication
and data transfer, corresponds to a combination of the Transport and Internet layers of the
architecture of the Internet. The Fabric layer is then responsible for communication at the
link level.

Figure 1: Relationship between Grid and Internet architectures.

The lack of resource ownership by grid schedulers and fluctuations in resource availability
require mechanisms which will enable grids to adjust themselves to cope with fluctuations
[4] [5]. A sudden increase in link load can, for example, increase the time for the transfer
of data between the computers where two tasks reside, thus leading to the necessity of
relocating the tasks to a third computer. Furthermore, the lack of a central controller
implies a need for self-adaptation [6]. The ability to discover, monitor and manage the use
of network resources is fundamental for the autonomous operation of a grid.

The contribution of this paper is a procedure for enabling grids to adapt themselves
to fluctuation of resource availability. It involves task scheduling, resource monitoring and
task migration, called Traffic Engineering for Grids in analogy to the Traffic Engineering
procedure for networks [7] [8]. This procedure involves fundamental concepts of monitoring
and self-adjustment as Traffic Engineering for networks. The distinct characteristic of the
procedure introduced here is the consideration of network resource costs at all times of task
mapping and migration. The proposed procedure involves different layers of the Internet
architecture as well as the Grid architecture.

This paper is organized as following. Section 2 introduces a procedure for Traffic Engi-
neering for Grids. Section 3 presents a summary of schedulers used in this paper. Numerical
examples are shown in Section 4. Related works are shown in Section 5 and Section 6 pro-
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vides some conclusions.

2 Proposal of Traffic Engineering

Key to the performance of grid applications is the choice of resources composing the virtual
organization (computing system) to be used to execute the application. This choice is made
by schedulers. Figure 2 illustrates the phases in the execution of a grid application. The
bottom of the left side of Figure 2 illustrates the steps needed for scheduling. Determination
of resource availability and application needs constitutes the first phase of the process.
Applications are usually described as Direct Acyclic Graphs (DAG) in which nodes represent
the tasks to be performed and arcs the dependence between two tasks. The weights of the
arcs represent the amount of data to be exchanged by the tasks and the weights of the nodes
the amount of processing required for a task. Figure 3 illustrates the DAG of a visualization
application [9] that will be used to illustrate the Traffic Engineering proposal introduced
here. The main question in scheduling is how to map the tasks to the network resources
so that the execution time of application, usually called schedule length or makespan, is
minimized.

Figure 2: A grid scheduling process
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Figure 3: A grid application DAG
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After the tasks are allocated to hosts (grid nodes) according to a schedule, tasks are
executed until all have been terminated. However, due to the lack of ownership of re-
sources, their availability can change dynamically, and the original schedule may become
sub-optimal. If, for instance, the load of a processor decreases, this processor may become
an interesting choice for decreasing the execution time of the application. Therefore, if
changes in resource availability lead to changes in the predicted schedule length, the sched-
ule should be redefined so that a shorter schedule than those originally predicted can be
achieved. Indeed, the proposal of applying traffic engineering to grids is to enable them to
self-adjust to current resource availability.

In order to provide this capability, it is necessary to monitor the network resources
periodically and perform code migration accordingly. The present proposal involves the
following steps:

• Step 1 Map the DAG describing the tasks that represent an application to the graph
describing the network resources. Produce a schedule for the beginning of task exe-
cution and data transfer;

• Step 2 Migrate the task codes and data to the nodes where the tasks will run. The
execution of the tasks begins as soon as migration is completed;

• Step 3 Monitor the resources of the grid to detect any variation in availability of
resources, either decrease or increase;

• Step 4 Gather the data collected in Step 3 and compare it to the scenario used for
previous scheduling of tasks. If no change is detected, continue monitoring the grid
periodically (Step 3);

• Step 5 Derive a new DAG representing current computation and data transfer demand
and produce a schedule for these tasks;

• Step 6 Check whether the schedule derived is equal to the current one;

• Step 7 Compare the cost of the solution derived in Step 5 with the cost of the current
solution. The cost of the solution derived in Step 5 should include the cost of migration
of tasks. If the predicted schedule length produced by the new schedule is greater than
that obtained by the current schedule, continue monitoring the grid resources (Step
3). The cost of migration of a task involves the time needed to complete the execution,
as well as the time to transfer data. A task is only worth moving if a reduction in
execution time compensates for the cost;

• Step 8 Migrate tasks to the designated processors on the basis of the most recent
schedule and return to monitor the grid resources (Step 3).

Figure 4 shows a diagram portraying Traffic Engineering for Grids.

The mapping of tasks to grid nodes and their scheduling (Steps 1 and 5) demands
efficient schedulers. Section 3 presents a set of schedulers [10] [11] used in this paper.



Self-Adjusting Grid Networks 5

Figure 4: A Flow Diagram of the Traffic Engineering for Grids Procedure

Code and data migration can be performed using the GridFTP [12] (Steps 2 and 8).
It is assumed in Step 8 that it is possible to resume the execution of an interrupted task.
One method for the resume of task execution is provided in [13]. Techniques for monitor-
ing the available bandwidth [14] [15] as well for predicting the network capacity with low
computational overhead are available [16] [17] [18] and can be used in Step 3.

The schedulers can be used for both the initial scheduling of the Application (Step 1
of Traffic Engineering for Grids) and the re-scheduling of tasks due to changes in resource
availability (Step 5). However, the tasks DAG to be used as input to the schedulers must
reflect already effected computation. For each task in the DAG, a new task should be created
with the same output arcs as the associated task. These two tasks will be connected by a
link with the weight of the new task representing the amount of processing still to be done.
Those tasks which have already begun at the time of re-assignment evaluation are fixed at
the hosts where they are processed.

Algorithm 1 redefines the application DAG so that the same scheduler can be used at
both Steps 1 and 5. Such redefinition of the application DAG is necessary since between
decision times about task migration, the computation progress and the change of demands
need to be considered.
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Algorithm 1 Tasks re-scheduling and migration
Input: Previous schedule; Description of current resource availability status

1: for each task i do

2: Assign the number of instructions already executed to the weight of task i.
3: Create a task i

′ and assign the backlog of instructions yet to be executed to the weight of the corresponding
vertex.

4: Move all the outgoing arcs of the vertex i to the vertex i
′.

5: Create an arc between vertex i and vertex i
′ with weight equivalent to the amount of bytes that need to be

transferred in case task i
′ migrates.

6: Assign task i to the same host to which it was mapped previously to the re-scheduling decision.
7: end for

8: for each task k which either has already completed execution or is presently receiving data from others tasks do

9: Enforce that task k execute in the host it was executing previously to the re-scheduling decision step.
10: end for

11: Execute the scheduler with the new DAG.
12: Migrate all tasks which the new schedule indicates a different host than the one it was executing previously to

the re-scheduling decision.

The self-adjusting capacity introduced by the Traffic Engineering procedure allows great
flexibility and can be introduced in middlewares for grids such as [19] [20] [21]. Figure 5
illustrates the introduction of the traffic engineering procedure into the scheme proposed
in [22] which is represented on both sides of the figure. Note that according to the procedure
in [22], once a task is scheduled to a node it is executed until completion regardless of
the fluctuation of resources availability. The central part of the figure is the procedure
introduced here and it replaces the dashed part of the scheme in [22].

Figure 5: Inclusion of Traffic Engineering for Grids in the process shown in Figure 2

3 Schedulers for the Traffic Engineering Procedure

Central to grid processing is the allocation of tasks to resources. In contrast to what happens
in multiprocessor systems, scheduling in grids involves heterogeneous resources and irregular
topologies. In heterogeneous systems, the scheduling problem is a NP-complete problem
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[23], and feasible solutions in real time require either heuristics or approximations.

The authors developed a set of schedulers which differ by the quality of schedules pro-
duced as well as by the computational demand. Six of the schedulers proposed use mixed
linear programming (LP) and integer linear programming whereas the other two are heuris-
tics randomized algorithms. The approach used in each scheduler is listed in Table 1. These
schedulers can be executed in parallel during finite period which duration represents the
maximum tolerable time so that the application can be executed properly.

Scheduler Approach

MLPCT Mixed linear programming that considers a real time line

CT-IRR MLPCT with relaxation of integer variables. The LP is executed n times

CT-RR MLPCT with relaxation of integer variables. The LP is executed 1 time

ILPDT Integer linear programming that considers a integer time line

DT-IRR ILPDT with relaxation of integer variables. The LP is executed n times

DT-RR ILPDT with relaxation of integer variables. The LP is executed 1 time

DG Drawing based in grid- and DAG-aware probabilities

RDU Drawing based in uniform probabilities

Table 1: Task schedulers (n is the number of tasks in the DAG)

The performance of these schedulers were exhaustively addressed using various appli-
cation DAGs and network topologies for both scheduling and re-scheduling scenarios. The
results of this evaluation indicate that the DT-RR presents the best compromise between
quality of scheduling and computation demand. However, the schedulers MPLCT and
ILPDT produce the best schedules under loose time restrictions.

These schedulers can be used in Steps 1 and 5 of the traffic engineering procedure
proposed in this paper.

4 Examples of the use of the Traffic Engineering Procedure

This section illustrates the use of Traffic Engineering procedure to minimize the execution
time of grid applications (schedule length). A simulator, called Gridsim-NS, developed at
the University of Trento, was used to generate examples. Gridsim-NS is actually a module
incorporated into the widely used NS-2 [24] simulator. Gridsim-NS receives as input a
task DAG and allows users to define a schedule to be employed for the input DAG. In
the following examples, the schedules were produced by the schedulers presented in the
Section 3.

The application is the one described in Figure 3, whereas the grid is illustrated in
Figure 6. The arc weights in the DAG represent the amount of data to transfer in GigaBytes,
whereas the node weights represent the amount of instructions in a 1012 scale. Figure 6(a)
shows the network topology whereas Figure 6(b), the grid nodes. The network has 34
nodes arranged around a central node, SRC0 (This topology represents partially CERN’s
LHC Computing Grid[25]). The available processing rate of this host, node, is 1600MIPS,
whereas all others can process at the rate of 8000MIPS. The link connecting SRC0 to
the other nodes has the capacity of 100Mbps, whereas all the other links are limited to
33.33Mbps. All links involve a propagation delay of 0.2ms.

In the first example, the application (Figure 3) is mapped using MLPCT. The resulting
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(a) Network Topology (b) Virtual Organization Graph

Figure 6: Grid used in the examples

mapping is 0 → SRC0, 1 → SRC2, 2 → SRC5, 3 → SRC8, 4 → SRC4, 5 → SRC1, 6 →

SRC9, 7 → SRC10, 8 → SRC0. Similar mapping could have involved other nodes, since
the topology is symmetrical. In the actual schedule derived, Tasks 1 to 7 start running at
the time of 82.66min, whereas task number 8 starts running at 175.96min and finishes at
255.96min.

In a second experiment, the same scenario and initial mapping were used. However, at
90min, UDP streams with a rate of 90Mbps were added as interfering traffic between nodes
SRC2 and SRC0 and between nodes SRC5 and SRC0. Monitoring the resources of the grid
was carried out every 120 minutes. Thus, at the time of the first data collection, the need
to re-evaluate the current schedule had become evident. At that time, the DAG for the
remaining tasks was modified to the one shown in Figure 7. For that DAG, both MLPCT
and ILPDT produced the same schedule. Since the cost involved in task migration includes
that of time needed to complete the execution, as well as that required to transfer data, a
task is worth moving only if a reduction in time of execution will compensate for this cost.
The new schedule determined that Tasks 1 and 2 should be migrated to nodes SRC3 and
SRC6, respectively. These migrations were designed to avoid the interfering traffic for the
transfer of 10GB of data to task 8. The new execution time was 281 min. If the tasks
had not migrated, the execution time would have been 358 min, i.e., an increase of about
27.4%. Figures 8 and 9 show, respectively, the time of execution of Task 1 and the Round
Trip Time (RTT) between SRC1 and SRC2. These figures illustrate task migration; it can
be seen that between the times 120 min and 150 min, no processing activity took place in
either of the two nodes.

In another set of experiments, resources were added to the grid. Such additions are
not necessarily due to the acquisition of new resources, as they may be due to the release
of resources by other applications. Figure 10 illustrates the addition of the node SRC16 ;
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Figure 7: DAG for migration at 120min
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Figure 8: Use of CPU for Tasks 1 and 2

the link capacity joining it to node SRC6 is 1Gbps, with an available processing rate of
8000MIPS. Similar nodes were also added to nodes SRC1 to SRC10. With this extra
resource, the execution time decreases to 247 min. This example shows that task migra-
tion should not only be investigated under conditions of a shortage of resources, but also
whenever increased resources become available. If, for example, the processing rate avail-
able were 4000MIPS, migration would not be advisable since, execution time would have
increased to 291 min if migration were carried out.

One of the key issues involved in the Traffic Engineering procedure is the frequency
of re-evaluation of the adequacy of the schedule under modified resource constraint. To
get an idea of the importance of the frequency of this procedure, various simulations were
carried out. A source of interfering traffic (60 Mbps) was introduced to the same links
as in the previous example. Both MLPCT and ILPDT were used for the experiments.
First, a simulation with no task migration was run; execution time was 279 min. Then,
the recommendations of the scheduler were followed. Table 2 shows the execution time
required when task migration is undertaken. It is clear that the frequency of evaluation
plays a major role in the execution time. If a long period between changes in resources
availability and the decision to migrate a tasks occurs, computation may have progressed
to a point in which migration would no longer be an interesting option. Moreover, it can
be seen that the ILPDT may produce schedules which yield longer execution times than
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Figure 9: RTT between SRC1 and SRC2 as well as between SRC5 and SRC6

those where no migration is pursued, as can be in the results when intervals of 120 min

and 130 min were used. Such imprecision is critical when approaching the “ideal” time
for re-evaluation due to the approximations introduced by time discretization. In fact, the
ideal frequency for re-evaluation is system dependent, since it is influenced by the frequency
of changes in the resource pool.

Interval MLPCT ILPDT
100 269 (migration) 269 (migration)
110 275 (migration) 275 (migration)
120 276 (no migration) 281 (migration)
130 276 (no migration) 287 (migration)
140 276 (no migration) 276 (no migration)
150 276 (no migration) 276 (no migration)

Table 2: Execution times as a function of monitoring interval duration (minutes)

5 Related Work

Various techniques for monitoring and performance prediction have been employed for sys-
tems [26] such as that of the Network Weather Service (NWS) [18], which uses active
monitoring techniques, as well as temporal series, to predict performance. One distinct
characteristic of the NWS system is its hierarchical monitoring approach. Applications
such as those supported by NWS require performance feedback in short periods of time,
typically in the order of minutes. Another system for applications which run for long pe-
riods is the Grid Harvest Service (GHS) [17] which is more scalable than NWS. In GHS,
performance prediction is carried out by neural networks and these predictions are employed
to determine task migration. A different monitoring system used in the Wren systems was
introduced in [15]; this adopts either active or passive monitoring techniques, depending on
the network load. All these proposals for monitoring status of resources can be incorporated
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Figure 10: Inclusion of new resource linked to SRC6

in Steps 3 and 4 of the Traffic Engineering procedure introduced in Section 2. However,
the prediction of performance in Traffic Engineering for Grids involves schedulers based on
optimization for determining potential re-configuration of a grid.

Several self-adjusting systems based on monitoring and task migration have been pro-
posed [20] [21] [19] in the literature. In [20] task migration is pursued whenever the service
level agreement between a user and a network provider is not being supported. Scheduling
is based on a high-level definition of requirements and NWS is used for monitoring. This
system differs from the one proposed in this paper by task migration which is carried out
in two steps. First, a task is migrated to an intermediate storage node and then to its
final definition. The drawback of this approach is the network bottleneck introduced and
the enlargement of migration period. The procedure presented in [21] also migrates tasks
whenever resource availability changes but only disconnection of resources is considered.
In this procedure, scheduling is based on a greedy algorithm without the consideration of
data dependencies. Moreover, the cost of task migration is not considered. The proposal
introduced in this paper differ from the one in [21] by the potential resource changes con-
sidered. The scheme introduced in [19] can also be used to migrate tasks if the cost gains of
migration exceed a certain threshold value, although the authors acknowledge that setting
this threshold value is quite difficult task which may prevent the rapid execution of certain
tasks.

6 Conclusions

Grid networks can accommodate a new generation of users with high computational and
data transfer demands. Although several grid systems already exist, this technology is still
in its infancy. One of the major challenges of grids networks is the fluctuation in availability
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of resources which has a definite impact on the performance of an application. Enabling grid
systems for self-adjustment in response to changing scenarios is crucial for autonomy and
will facilitate their use. This paper has introduced a multi layer traffic engineering approach
for the empowerment of grids in this direction. The effectiveness of this new procedure has
been illustrated in several simulation experiments involving various changes in the simulated
grid. In the future, the dynamic determination of the duration of intervals for re-evaluation
of schedule needs to be pursued. Moreover, traffic engineering proposed here should be
introduced into existing systems to cope with uncertainties on both bandwidth estimation
and estimation of processing power.
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